» » В сопротивлении материалов приняты следующие буквенные обозначения. Основные понятия и определения сопромата

В сопротивлении материалов приняты следующие буквенные обозначения. Основные понятия и определения сопромата

1. Основные понятия и допущения. Жесткость – способность конструкции в определенных пределах воспринимать воздействие внешних сил без разрушения и существенного изменения геометрических размеров. Прочность – способность конструкции и ее материалов сопротивляться нагрузкам. Устойчивость – способность конструкции сохранять форму первоначального равновесия. Выносливость – прочность материалов в условиях нагрузок. Гипотеза сплошности и однородности: материал, состоящий из атомов и молекул, заменяют сплошным однородным телом. Сплошность обозначает, что сколь угодно малый объем содержит в-во. Однородность обозначает, что во всех точках св-ва материала одинаковы. Использование гипотезы позволяет применять сист. координат и для исследования интересующих нас функций использовать матем анализ и описывать действия различными моделями. Гипотеза изотропности: предполагает, что во всех направлениях св-ва материала одинаковы. Анизотропным явл дерево, у к-ого св-ва вдоль и поперек волокон значительно отличаются.

2. Механические хар-ки материала. Под пределом текучести σ Т понимается то напряжение, при к-ом происходит рост деформации без заметного увеличения нагрузки. Под пределом упругости σ У понимается такое наибольшее напряжение, до к-ого материал не получает остаточных деформаций. Предел прочности (σ В)– отношение максимальной силы, к-ую способен выдержать образец, к его начальной площади поперечного сечения. Предел пропорциональности (σ ПР) – наибольшее напряжение, до к-ого материал следует закону Гука. Величина Е представляет собой коэф пропорциональности, называемый модулем упругости первого рода. Величина G назыв модулем сдвига или модулем упругости 2 рода. (G=0.5E/(1+µ)). µ - безразмерный коэф пропорциональности, называемый коэф Пуассона, хар-ет св-ва материала, определяется экспериментальным путем, для всех металлов числовые значения лежат в пределах 0,25…0,35.

3. Силы. Взаимодействие между частями рассматриваемого объекта хар-ют внутренние силы. Они возникают не только между отдельными взаимодействующими узлами конструкции, но также и между всеми смежными частицами объекта при нагружении. Внутренние силы определяются методом сечений. Различают поверхностные и объемные внешние силы. Поверхностные силы могут быть приложены к малым участкам поверхности (это сосредоточенные силы, например Р) или к конечным участкам поверхности (это распределенные силы, например q). Они хар-ют взаимодействие конструкции с другими конструкциями или с внешней средой. Объемные силы распределены по объему тела. Это силы тяжести, магнитного напряжения, силы инерции при ускоренном движении конструкции.

4. Понятие напряжения, допустимое напряжение. Напряжение – мера интенсивности внутренних сил.lim∆R/∆F=p – полное напряжение. Полное напряжение может быть разложено на три составляющие: по нормали к плоскости сечения и по двум осям в плоскости сечения. Составляющую вектора полного напряжения по нормали обозначают через σ и назыв нормальным напряжением. Составляющие в плоскости сечения назыв касательными напряжениями и обознач через τ. Допускаемое напряжение – [σ]=σ ПРЕД /[n] – зависит от марки материала и коэф запаса прочности.

5. Деформация растяжения-сжатия. Растяжение (сжатие) – вид нагружения, при к-ом из шести внутренних силовых факторов (Qx, Qy, Mx, My, Mz, N) пять равны нулю, а N≠0. σ max =N max /F≤[σ] + - условие прочности при растяжении; σ max =N max /F≤[σ] - - условие прочности при сжатии. Математическое выражение з-на Гука: σ=εЕ, где ε=∆L/L 0 . ∆L=NL/EF – развернутый з-он Гука, где EF – жесткость стержня поперечного сечения. ε – относительная (продольная) деформация, ε’=∆а/а 0 =∆в/в 0 – поперечная деформация, где при нагружении а 0 , в 0 уменьшились на величину ∆а=а 0 -а, ∆в=в 0 -в.

6. Геометрические хар-ки плоских сечений. Статический момент площади: S x =∫ydF, S y =∫xdF, S x =y c F, S y =x c F. Для сложной фигуры S y =∑S yi , S x =∑S xi .Осевые моменты инерции : J x =∫y 2 dF, J y =∫x 2 dF. Для прямоугольника J x =bh 3 /12, J y =hb 3 /12, для квадрата J x =J у =а 4 /12. Центробежный момент инерции : J xy =∫xydF, если сечение симметрично хотя одной оси, J x у =0. Центробежный момент инерции несимметричных тел будет положительным, если большая часть площади будет находиться в 1 и 3 квадранте. Полярный момент инерции : J ρ =∫ρ 2 dF, ρ 2 =х 2 +у 2 , где ρ – расстояние от центра координат до dF. J ρ =J x +J y . Для круга J ρ =πd 4 /32, J x =πd 4 /64. Для кольца J ρ =2J х =π(D 4 -d 4)/32=πD 4 (1-α 4)/32. Моменты сопротивления : для прямоугольника W x =J x /у max , где у max – расстояние от центра тяжести сечения до границ по у. W x =bh 2 /6, W x =hb 2 /6, для круга W ρ =J ρ /ρ max , W ρ =πd 3 /16, для кольца W ρ =πD 3 (1-α 3)/16. Координаты центра тяжести : x c =(x1F1+x2F2+x3F3)/(F1+F2+F3). Главные радиусы инерции: i U =√J U /F, i V =√J V /F. Моменты инерции при параллельном переносе осей координат: J x 1 =J х c +b 2 F, J y 1 =J uc +a 2 F, J x 1 y 1 =J х cyc +abF.

7. Деформация сдвига и кручения. Чистым сдвигом называется такое напряженное состояние, когда на гранях выделенного эоемента возникают только касательные напряжения τ. Под кручением понимают вид движения, при к-ом в поперечном сечении стержня возникает силовой фактор Mz≠0, остальные Мх=Му=0, N=0, Qx=Qy=0. Изменение внутренних силовых факторов по длине изображаются в виде эпюры с использованием метода сечений и правила знака. При деформации при сдвиге касательное напряжение τ связано с угловой деформацией γ соотношением τ =Gγ. dφ/dz=θ – относительный угол закручивания – это угол взаимного поворота двух сечений, отнесенный к расстоянию между ними. θ=М К /GJ ρ , где GJ ρ – жесткость поперечного сечения при кручении. τ max =M Kmax /W ρ ≤[τ] – условие прочности при кручении круглых стержней. θ max =М К /GJ ρ ≤[θ] – условие жесткости при кручении круглых стержней. [θ] – зависит от типа опор.

8. Изгиб. Под изгибом понимают такой вид нагружения, при к-ом ось стержня искривляется (изгибается) от действия нагрузок, расположенных перпендикулярно оси. Изгибу подвергаютя валы всех машин от действия сил, пары сил – момента в местах посадки зубчатых колес, шестерен, полумуфт. 1) Изгиб назыв чистым , если в поперечном сечении стержня возникает единственный силовой фактор – момент изгибающий, остальные внутренние силовые факторы равны нулю. Образование деформаций при чистом изгибе можно рассматривать как результат поворота плоских поперечных сечений одно относительно другого. σ=М у /J x – формула Навье для определения напряжений. ε=у/ρ – продольная относительная деформация. Диф зависимости: q=dQz/dz, Qz=dMz/dz. Условие прочности: σ max =М max /W x ≤[σ] 2) Изгиб назыв плоским , если силовая плоскость, т.е. плоскость действия нагрузок, совпадает с одной из центральных осей. 3) Изгиб назыв косым , если плоскость действия нагрузок не совпадает ни с одной из центральных осей. Геометрическое место точек в сечении, удовлетворяющее условию σ=0, назыв нейтральной линией сечения, она перпендикулярна к плоскости кривизны изогнутого стержня. 4) Изгиб назыв поперечным , если в поперечном сечении возникает момент изгибающий и поперечная сила. τ=QS x отс /bJ x – формула Журавского, τ max =Q max S xmax /bJ x ≤[τ] – условие прочности. Полная проверка прочности балок при поперечном изгибе заключается в определении размеров поперечного сечения по формуле Навье и дальнейшей проверки по касательным напряжениям. Т.к. наличие τ и σ в сечении относится к сложному нагружению, то оценку напряженного состояния при совместном их действии можно вычислить, используя 4 теорию прочности σ экв4 =√σ 2 +3τ 2 ≤[σ].

9. Напряженное состояние. Исследуем напряженное состояние (НС) в окрестностях точки А, для этого выделим бесконечно малый параллелепипед, к-ый в увеличенном масштабе поместим в сист координат. Действия отброшенной части заменяем внутренними силовыми факторами, интенсивность к-ых можно выразить через главный вектор нормальных и касательных напряжений, к-ые разложим по трем осям – это компоненты НС точки А. Как бы сложно не было нагружено тело, всегда можно выделить взаимно перпендикулярные площадки, у к-ых касательные напряжения равны нулю. Такие площадки назыв главными. Линейное НС – когда σ2=σ3=0, плоское НС – когда σ3=0, объемное НС – когда σ1≠0, σ2≠0, σ3≠0. σ1, σ2,σ3 – главные напряжения. Напряжения на наклонных площадках при ПНС: τ β =-τ α =0,5(σ2-σ1)sinα, σ α =0.5(σ1+σ2)+0.5(σ1-σ2)cos2α, σ β =σ1sin 2 α+σ2cos 2 α.

10. Теории прочности. В случае ЛНС оценка прочности выполняется по условию σ max =σ1≤[σ]=σ пред /[n]. При наличии σ1>σ2>σ3 в случае НС опред экспериментальным путем опасное сост трудоемко из-за большого кол-ва экспериментов при различных сочетаниях напряжений. Поэтому используют критерий, позволяющий выделить преимущественное влияние одного из факторов, к-ый будет назван критерием и будет положен в основу теории. 1) первая теория прочности (наибольших нормальных напряжений): напряженное сост равнопрочны по хрупкому разрушению, если у них равны растягивающие напряжения (не учит σ2 и σ3) – σ экв =σ1≤[σ]. 2) вторая теория прочности (наибольших растягивающих деформаций-т Мариотта): н6апряжен сост равнопрочны по хрупкому разрушению, если у них равны наибольшие растягивающие деформации. ε max =ε1≤[ε], ε1=(σ1-μ(σ2+σ3))/E, σ экв =σ1-μ(σ2+σ3)≤[σ]. 3) третья теория прочности (наиб касат напряжений – Кулон): напряж сост равнопрочны по появлению недопустимых пластич деформаций, если у них равны наиб касат напряжения τ max =0.5(σ1-σ3)≤[τ]=[σ]/2, σ экв =σ1-σ3≤[σ] σ экв =√σ 2 +4τ 2 ≤[σ]. 4) четвертая теория удельной потенциальной энергии формоизменения (энергетическая): при деформировании потенц энергия расход на изменение формы и объема U=U ф +U V напряжен сост равнопрочны по появлению недопустимых пластич деформаций, если у них равны удельные потенц энергии изменения формы. U экв =U ф. С учетом обобщенного з-на Гука и матем преобразований σ экв =√(σ1 2 +σ2 2 +σ3 2 -σ1σ2-σ2σ3-σ3σ1)≤[σ], σ экв =√(0,5[(σ1-σ2) 2 +(σ1-σ3) 2 +(σ3-σ2) 2 ])≤[τ]. В случае ПНС σ экв =√σ 2 +3τ 2 . 5) пятая теория прочности Мора (обобщ теория предельных сост): опасное предельное сост опред двумя главными напряженияи, наиб и наим σ экв =σ1-кσ3≤[σ], где к-коэф неравнопрочности, к-ый учитывает способность материала неодинаково сопротивляться растяжению и сжатию к=[σ р ]/[σ сж ].

11. Энергетические теоремы. Перемещение при изгибе – в инженерных расчетах встречаются случаи, когда балки, удовлетворяя условию прочности, не обладают достаточной жесткостью. Жесткость или деформативность балки опред перемещениями: θ – угол поворота, Δ – прогиб. Под нагрузкой балка деформируется и представляет собой упругую линию, к-ая деформируется по радиусу ρ А. Прогиб и угол поворота в т А образован касательной упругой линией балки и осью z. Рассчитать на жесткость значит опред максимальный прогиб и сравнить его с допустимым. Метод Мора – универсальный метод опред перемещений для плоских и пространственных систем с постоянной и переменной жесткостью, удобен тем, что может быть запрограммирован. Для опред прогиба рисуем фиктивную балку и прикладываем единичн безразмерную силу. Δ=1/EJ x *∑∫MM 1 dz. Для определения угла поворота рисуем фиктивную балку и прикладываем единичн безразм момент θ=1/EJ x *∑∫MM’ 1 dz. Правило Верещагина – удобно тем, что при постоянной жесткости интегрирование можно заменить алгебраическим перемножением эпюр изгибающих моментов грузового и единичного сост балки. Явл осн методом, к-ый применяется при раскрытии СНС. Δ=1/EJ x *∑ω p M 1 c – правило Верещагина, в к-ом перемещение обратно пропорционально жесткости балки и прямо пропорционально произведению площади грузового сост балки на ординату центра тяжести. Особенности применения: эпюру изгиб моментов делят на элементарные фигуры, ω p и M 1 c берутся с учетом знаков, если на участке одновременно действуют q и Р или R, то эпюры необходимо расслаивать, т.е. строить отдельно от каждой нагрузки или применять различные приемы расслоения.

12. Статически неопределимые системы. СНС назыв те сист, у к-ых уравнений статики недостаточно для определения реакций опор, т.е. связей, реакций в ней больше, чем необходимо для их равновесия. Разность между общ числом опор и кол-вом независимых уравнений статики, к-ые можно сост для данной сист назыв степенью статической неопределимости S . Связи, наложенные на сист сверхнеобходимых назыв лишними или дополнительными. Введение дополнительных опорных закреплений приводит к уменьшению изгибающих моментов и максимального прогиба, т.е. повышается прочность и жесткость конструкции. Для раскрытия статич неопределимости дополнительно условие совместимости деформации, к-ое позволяет опред дополнительные реакции опор, а затем решение по опред эпюр Q и М выполняется как обычно. Основная система получается из заданной- путем отбрасывания лишних связей и нагрузок. Эквивалентная система – получается путем нагружения основной системы нагрузками и лишними неизвестными реакциями, заменяющими действия отброшенной связи. Используя принцип независимости действия сил, находим прогиб от нагрузки Р и реакции х1. σ 11 х 1 +Δ 1р =0 – каноническое уравнение совместности деформации, где Δ 1р – перемещение в точке приложения х1 от силы Р. Δ 1р – Мр*М1, σ 11 -М1*М1 – это удобно выполнить методом Верещагина. Деформационная проверка решения – для этого выбираем другую основную систему и опред угол поворота в опоре, должна быть равна нулю, θ=0 - М ∑ *М’.

13. Циклическая прочность. В инженерной практике до 80% деталей машин разрушаются по причине статической прочности при напряжениях гораздо меньших, чем σ в в тех случаях, когда напряжения являются знакопеременными и циклически изменяющимися. Процесс накопления повреждений при циклически измен. напряжениях называется усталость материала. Процесс сопротивления усталостному напряжению наз циклической прочностью или выносливостью. Т-период цикла. σmax τmax это нормальные напряжения. σm, τm – среднее напряжение; r-коэффициент ассиметрии цикла; факторы, влияющие на придел выносливости: а) Концентраторы напряжения: проточки, галтели, шпонки, резьба и шлицы; это учитывается эффективным коэффиц конц напряжений, которые обозначаются К σ =σ -1 /σ -1к К τ =τ -1 /τ -1к; б)Шероховатость поверхности: чем грубее выполнена механическая обработка металла, тем больше пороков металла имеется при литье, тем придел выносливости детали будет ниже. Любая микро трещина или углубление после резца может явиться источником усталостной трещины. Это учитывается коэф влияния качества поверхности. К Fσ К Fτ - ; в) Масштабный фактор влияет на придел выносливости, с увеличением размеров детали вероятность наличия пороков увеличивается, следовательно чем больше размеры детали, тем хуже при оценке ее выносливости это учит коэф влияния абсолютных размеров поперечного сечения. К dσ К dτ . Дефектный коэф: K σD =/Kv ; Kv – коэф упрочнения зависит от вида термообработки.

14. Устойчивость. Переход системы из устойчивого состояния в неустойчивое называется потерей устойчивости, а соответствующая ей сила называется критической силой Ркр В 1774 г Э. Эйлер провел исследование и определил математически Ркр. По Эйлеру Ркр – сила необходимая для самого малого наклонения колонны. Ркр=П 2 *Е*Imin/L 2 ; Гибкость стержня λ=ν*L/i min ; Критическое напряжение σ кр =П 2 Е/λ 2 . Предельная гибкость λ зависит только от физико-механических свойств материала стержня и она постоянна для данного материала.


Сопротивление материалов – раздел механики деформируемого твердого тела, в котором рассматриваются методы расчета элементов машин и сооружений на прочность, жесткость и устойчивость.

Прочностью называется способность материала сопротивляться воздействию внешних сил, не разрушаясь и без появления остаточных деформаций. Расчеты на прочность дают возможность определить размеры и форму деталей, выдерживающих заданную нагрузку, при наименьшей затрате материала.

Жесткостью называется способность тела сопротивляться образованию деформаций. Расчеты на жесткость гарантируют, что изменения формы и размеров тела не превзойдут допустимых норм.

Устойчивостью называется способность конструкций сопротивляться усилиям, стремящимся вывести их из состояния равновесия. Расчеты на устойчивость предотвращают внезапную потерю равновесия и искривление элементов конструкции.

Долговечность состоит в способности конструкции сохранять необходимые для эксплуатации служебные свойства в течение заранее предусмотренного срока времени.

Брус (рис.1, а - в) представляет собой тело, размеры перечного сечения которого малы по сравнению с длиной. Ось бруса, это линия, соединяющая центры тяжести его поперечных сечений. Различают брусья постоянного или переменного поперечного сечения. Брус может иметь прямолинейную или криволинейную ось. Брус с прямолинейной осью называется стержнем (рис.1, а, б). Тонкостенные элементы конструкции разделяют на пластины и оболочки.

Оболочка (рис.1, г) это тело, один из размеров которого (толщина) намного меньше остальных. Если поверхность оболочки представляет собой плоскость, то объект называют пластиной (рис.1, д). Массивами называются тела, у которых все размеры одного порядка (рис.1, е). К ним относятся фундаменты сооружений, подпорные стены и др.



Эти элементы в сопротивлении материалов используются для составления расчетной схемы реального объекта и проведения ее инженерного анализа. Под расчетной схемой понимается некоторая идеализированная модель реальной конструкции, в которой отброшены все малосущественные факторы, влияющие на ее поведение под нагрузкой

Допущения о свойствах материала

Материал считается сплошным, однородным, изотропным и идеально упругим.
Сплошность – материал считается непрерывным. Однородность –физические свойства материала одинаковы во всех его точках.
Изотропность – свойства материала одинаковы по всем направлениям.
Идеальная упругость – свойство материала (тела) полностью восстанавливать свою форму и размеры после устранения причин, вызвавших деформацию.

Допущения о деформациях

1. Гипотеза об отсутствии первоначальных внутренних усилий.

2. Принцип неизменности начальных размеров – деформации малы по сравнению с первоначальными размерами тела.

3. Гипотеза о линейной деформируемости тел – деформации прямо пропорциональны приложенным силам (закон Гука).

4. Принцип независимости действия сил.

5. Гипотеза плоских сечений Бернулли – плоские поперечные сечения бруса до деформации остаются плоскими и нормальными к оси бруса после деформации.

6. Принцип Сен-Венана – напряженное состояние тела на достаточном удалении от области действия локальных нагрузок очень мало зависит от детального способа их приложения

Внешние силы

Действие на конструкцию окружающих тел заменяют силами, которые называют внешними силами или нагрузками. Рассмотрим их классификацию. К нагрузкам относятся активные силы (для восприятия которых создана конструкция), и реактивные (реакции связей) - уравновешивающие конструкцию силы. По способу приложения внешние силы можно разделить на сосредоточенные и распределенные. Распределенные нагрузки характеризуются ин- тенсивностью, и могут быть линейно, поверхностно или объемно распределенными. По характеру воздействия нагрузки внешние силы бывают статические и динамические . К статическим силам относят нагрузки, изменения которых во времени малы, т.е. ускорениями точек элементов конструкций (силами инерции) можно пренебречь. Динамические нагрузки вызывают в конструкции или отдельных ее элементах такие ускорения, которыми при расчетах пренебрегать нельзя

Внутренние силы. Метод сечений.

Действие на тело внешних сил приводит к его деформации (меняется взаимное расположение частиц тела). Вследствие этого между частицами возникают дополнительные силы взаимодействия. Это силы сопротивления изменению формы и размеров тела под действием нагрузки, называют внутренними силами (усилиями). С увеличением нагрузки внутренние усилия возрастают. Выход из строя элемента конструкции наступает при превышении внешних сил некоторого предельного для данной конструкции уровня внутренних усилий. Поэтому оценка прочности нагруженной конструкции требует знания величины и направления возникающих внутренних усилий. Значения и направления внутренних сил в нагруженном теле определяют при заданных внешних нагрузках методом сечений.

Метод сечений (см. рис. 2) состоит в том, что брус, находящийся в равновесии под действием системы внешних сил, мысленно рассекают на две части (рис. 2, а), и рассматривают равновесие одной из них, заменяя действие отброшенной части бруса системой внутренних сил, распределенных по сечению (рис. 2, б). Заметим, что внутренние силы для бруса в целом, становятся внешними для одной из его частей. Причем во всех случаях внутренние усилия уравновешивают внешние силы, действующие на отсеченную часть бруса.

В соответствии с правилом параллельного переноса сил статики приведем все распределенные внутренние силы к центру тяжести сечения. В результате получим их главный вектор R и главный момент M системы внутренних сил (рис. 2, в). Выбрав систему координат O xyz так, чтобы ось z являлась продольной осью бруса и проецируя главный вектор R и главный момент M внутренних сил на оси, получим шесть внутренних силовых факторов в сечении бруса: продольную силу N, поперечные силы Q x и Q y , изгибающие моменты М x и M y , а также крутящий момент Т. По виду внутренних силовых факторов можно определить характер нагружения бруса. Если в поперечных сечениях бруса возникает только продольная сила N, а другие силовые факторы отсутствуют, то имеет место «растяжение» или «сжатие» бруса (в зависимости от направления силы N). Если в сечениях действуют только поперечная сила Q x или Q y - это случай «чистого сдвига». При «кручении» в сечениях бруса действуют только крутящие моменты Т. При «чистом изгибе» - только изгибающие моменты М. Возможнытакже комбинированные виды нагружения (изгиб с растяжением, кручение с изгибом и др.) – это случаи «сложного сопротивления». Для наглядного представления характера изменения внутренних силовых факторов вдоль оси бруса строят их графики, называемые эпюрами . Эпюры позволяют определить наиболее нагруженные участки бруса и установить опасные сечения.

  • 2.6. Предел прочности
  • 2.7. Условие прочности
  • 3.Внутренние силовые факторы (всф)
  • 3.1. Случай воздействия внешних сил в одной плоскости
  • 3.2. Основные соотношения между погонной силой q, поперечной силой Qy и изгибающим моментом Mx
  • Отсюда вытекает соотношение, называемое первым уравнением равновесия элемента балки
  • 4.Эпюры всф
  • 5. Правила контроля построения эпюр
  • 6. Общий случай напряженного состояния
  • 6.1.Нормальные и касательные напряжения
  • 6.2. Закон парности касательных напряжений
  • 7. Деформации
  • 8. Основные предположения и законы, используемые в сопротивлении материалов
  • 8.1. Основные предположения, используемые в сопротивлении материалов
  • 8.2. Основные законы, используемые в сопротивлении материалов
  • При наличии перепада температур тела изменяют свои размеры, причем прямо пропорционально этому перепаду температур.
  • 9. Примеры использования законов механики для расчета строительных сооружений
  • 9.1. Расчет статически неопределимых систем
  • 9.1.1. Статически неопределимая железобетонная колонна
  • 9.1.2 Температурные напряжения
  • 9.1.3. Монтажные напряжения
  • 9.1.4. Расчет колонны по теории предельного равновесия
  • 9.2. Особенности температурных и монтажных напряжений
  • 9.2.1. Независимость температурных напряжений от размеров тела
  • 9.2.2. Независимость монтажных напряжений от размеров тела
  • 9.2.3. О температурных и монтажных напряжениях в статически определимых системах
  • 9.3. Независимость предельной нагрузки от самоуравновешенных начальных напряжений
  • 9.4. Некоторые особенности деформирования стержней при растяжении и сжатии с учетом силы тяжести
  • 9.5. Расчет элементов конструкций с трещинами
  • Порядок расчета тел с трещинами
  • 9.6. Расчет конструкций на долговечность
  • 9.6.1. Долговечность железобетонной колонны при наличии ползучести бетона
  • 9.6.2. Условие независимости напряжений от времени в конструкциях из вязкоупругих материалов
  • 9.7 Теория накопления микроповреждений
  • 10. Расчет стержней и стерневых систем на жесткость
  • Составные стержни
  • Стержневые системы
  • 10.1. Формула Мора для вычисления перемещения конструкции
  • 10.2. Формула Мора для стержневых систем
  • 11. Закономерности разрушения материала
  • 11.1. Закономерности сложного напряженного состояния
  • 11.2. Зависимость иот касательных напряжений
  • 11.3. Главные напряжения
  • Вычисление
  • 11.4. Виды разрушений материалов
  • 11.5.Теории кратковременной прочности
  • 11.5.1.Первая теория прочности
  • 11.5.2.Вторая теория прочности
  • 11.5.3.Третья теория прочности (теория максимальных касательных напряжений)
  • 11.5.4.Четвертая теория (энергетическая)
  • 11.5.5. Пятая теория – критерий Мора
  • 12. Краткое изложение теорий прочности в задачах сопротивления материалов
  • 13. Расчет цилиндрической оболочки под воздействием внутреннего давления
  • 14. Усталостное разрушение (циклическая прочность)
  • 14.1. Расчет сооружений при циклическом нагружении с помощью диграммы Вёлера
  • 14.2. Расчет сооружений при циклическом нагружении по теории развивающихся трещин
  • 15. Изгиб балок
  • 15.1. Нормальные напряжения. Формула Навье
  • 15.2. Определение положения нейтральной линии (оси х) в сечении
  • 15.3 Момент сопротивления
  • 15.4 Ошибка Галилея
  • 15.5 Касательные напряжения в балке
  • 15.6. Касательные напряжения в полке двутавра
  • 15.7. Анализ формул для напряжений
  • 15.8. Эффект Эмерсона
  • 15.9. Парадоксы формулы Журавского
  • 15.10. О максимальных касательных напряжениях (τzy)max
  • 15.11. Расчеты балки на прочность
  • 1. Разрушение изломом
  • 2.Разрушение срезом (расслоение).
  • 3. Расчет балки по главным напряжениям.
  • 4. Расчет по III и IV теориям прочности.
  • 16. Расчет балки на жесткость
  • 16.1. Формула Мора для вычисления прогиба
  • 16.1.1 Методы вычисления интегралов. Формулы трапеций и Симпсона
  • Формула трапеций
  • Формула Симпсона
  • . Вычисление прогибов на основе решения дифференциального уравнения изогнутой оси балки
  • 16.2.1 Решение дифференциального уравнения изогнутой оси балки
  • 16.2.2 Правила Клебша
  • 16.2.3 Условия для определения с и d
  • Пример вычисления прогиба
  • 16.2.4. Балки на упругом основании. Закон Винклера
  • 16.4. Уравнение изогнутой оси балки на упругом основании
  • 16.5. Бесконечная балка на упругом основании
  • 17. Потеря устойчивости
  • 17.1 Формула Эйлера
  • 17.2 Другие условия закрепления.
  • 17.3 Предельная гибкость. Длинный стержень.
  • 17.4 Формула Ясинского.
  • 17.5 Продольный изгиб
  • 18. Кручение валов
  • 18.1. Кручение круглых валов
  • 18.2. Напряжения в сечениях вала
  • 18.3. Расчет вала на жесткость
  • 18.4. Свободное кручение тонкостенных стержней
  • 18.5. Напряжения при свободном кручении тонкостенных стержней замкнутого профиля
  • 18.6. Угол закрутки тонкостенных стержней замкнутого профиля
  • 18.7. Кручение стержней открытого профиля
  • 19. Сложная деформация
  • 19.1. Эпюры внутренних силовых факторов (всф)
  • 19.2. Растяжение с изгибом
  • 19.3. Максимальные напряжения при растяжении с изгибом
  • 19.4 Косой изгиб
  • 19.5. Проверка прочности круглых стержней при кручении с изгибом
  • 19.6 Внецентренное сжатие. Ядро сечения
  • 19.7 Построение ядра сечения
  • 20. Динамические задачи
  • 20.1. Удар
  • 20.2 Область применения формулы для коэффициента динамичности
  • Выражение коэффициента динамичности через скорость ударяющего тела
  • 20.4. Принцип Даламбера
  • 20.5. Колебания упругих стержней
  • 20.5.1. Свободные колебания
  • 20.5.2. Вынужденные колебания
  • Способы борьбы с резонансом
  • 20.5.3 Вынужденные колебания стержня с демпфером
  • 21. Теория предельного равновесия и её использование при расчете конструкций
  • 21.1. Задача изгиба балки Предельный момент.
  • 21.2. Применение теории предельного равновесия для расчета
  • Литература
  • Содержание
  • 8.2. Основные законы, используемые в сопротивлении материалов

      Соотношения статики. Их записывают в виде следующих уравнений равновесия.

      Закон Гука (1678 год): чем больше сила, тем больше деформация, причем, прямо пропорционально силе . Физически это означает, что все тела это пружины, но с большой жесткостью. При простом растяжении бруса продольной силой N = F этот закон можно записать в виде:

    Здесь
    продольная сила,l - длина бруса, А - площадь его поперечного сечения, Е - коэффициент упругости первого рода (модуль Юнга ).

    С учетом формул для напряжений и деформаций, закон Гука записывают следующим образом:
    .

    Аналогичная связь наблюдается в экспериментах и между касательными напряжениями и углом сдвига:

    .

    G называют модулем сдвига , реже – модулем упругости второго рода. Как и любой закон, имеет предел применимости и закон Гука. Напряжение
    , до которого справедлив закон Гука, называетсяпределом пропорциональности (это важнейшая характеристика в сопромате).

    Изобразим зависимость от графически (рис.8.1). Эта картина называется диаграммой растяжения . После точки В (т.е. при
    ) эта зависимость перестает быть прямолинейной.

    При
    после разгрузки в теле появляются остаточные деформации, поэтомуназываетсяпределом упругости .

    При достижении напряжением величины σ = σ т многие металлы начинают проявлять свойство, которое называется текучестью . Это означает, что даже при постоянной нагрузке материал продолжает деформироваться (то есть ведет себя как жидкость). Графически это означает, что диаграмма параллельна абсциссе (участок DL). Напряжение σ т, при котором материал течет, называется пределом текучести .

    Некоторые материалы (Ст.3 - строительная сталь) после непродолжительного течения снова начинают сопротивляться. Сопротивление материала продолжается до некоторого максимального значения σ пр, в дальнейшем начинается постепенное разрушение. Величина σ пр - называется пределом прочности (синоним для стали: временное сопротивление, для бетона – кубиковая или призменная прочность). Применяют также и следующие обозначения:

    =R b

    Аналогичная зависимость наблюдается в экспериментах между касательными напряжениями и сдвигами.

    3) Закон Дюгамеля – Неймана (линейного температурного расширения):

    При наличии перепада температур тела изменяют свои размеры, причем прямо пропорционально этому перепаду температур.

    Пусть имеется перепад температур
    . Тогда этот закон имеет вид:

    Здесь α - коэффициент линейного температурного расширения , l - длина стержня, Δ l - его удлинение.

    4) Закон ползучести .

    Исследования показали, что все материалы сильно неоднородны в малом. Схематическое строение стали изображено на рис.8.2.

    Некоторые из составляющих обладают свойствами жидкости, поэтому многие материалы под нагрузкой с течением времени получает дополнительное удлинение
    (рис.8.3.) (металлы при высоких температурах, бетон, дерево, пластики – при обычных температурах). Это явление называетсяползучестью материала.

    Для жидкости справедлив закон: чем больше сила, тем больше скорость движения тела в жидкости . Если это соотношение линейно (т.е. сила пропорциональна скорости), то можно записать его в виде:

    Е
    сли перейти к относительным силам и относительным удлинениям, то получим

    Здесь индекс « cr » означает, что рассматривается та часть удлинения, которая вызвана ползучестью материала. Механическая характеристика называется коэффициентом вязкости.

      Закон сохранения энергии.

    Рассмотрим нагруженный брус

    Введем понятие перемещения точки, например,

    - вертикальное перемещение точки В;

    - горизонтальное смещение точки С.

    Силы
    при этом совершают некоторую работуU . Учитывая, что силы
    начинают возрастать постепенно и предполагая, что возрастают они пропорционально перемещениям, получим:

    .

    Согласно закону сохранения: никакая работа не исчезает, она тратится на совершение другой работы или переходит в другую энергию (энергия – это работа, которую может совершить тело.).

    Работа сил
    , тратится на преодоление сопротивления упругих сил, возникающих в нашем теле. Чтобы подсчитать эту работу учтем, что тело можно считать состоящим из малых упругих частиц. Рассмотрим одну из них:

    Со стороны соседних частиц на него действует напряжение . Равнодействующая напряжений будет

    Под действием частица удлинится. Согласно определению относительное удлинение это удлинение на единицу длины. Тогда:

    Вычислим работу dW , которую совершает сила dN (здесь также учитывается, что силы dN начинают возрастать постепенно и возрастают они пропорциональны перемещениям):

    Для всего тела получим:

    .

    Работа W , которую совершило , называютэнергией упругой деформации.

    Согласно закону сохранения энергии:

    6)Принцип возможных перемещений .

    Это один из вариантов записизакона сохранения энергии.

    Пусть на брус действуют силы F 1 , F 2 ,. Они вызывают в теле перемещения точки
    и напряжения
    . Дадим телудополнительные малые возможные перемещения
    . В механике запись вида
    означает фразу «возможное значение величиныа ». Эти возможные перемещения вызовут в теле дополнительные возможные деформации
    . Они приведут к появлению дополнительных внешних сил и напряжений
    , δ.

    Вычислим работу внешних сил на дополнительных возможных малых перемещениях:

    Здесь
    - дополнительные перемещения тех точек, в которых приложены силыF 1 , F 2 ,

    Рассмотрим снова малый элемент с поперечным сечением dA и длиной dz (см. рис.8.5. и 8.6.). Согласно определению дополнительное удлинение dz этого элемента вычисляется по формуле:

    dz =  dz.

    Сила растяжения элемента будет:

    dN = (+δ) dA dA ..

    Работа внутренних сил на дополнительных перемещениях вычисляется для малого элемента следующим образом:

    dW = dN dz = dA  dz =  dV

    С
    уммируя энергию деформации всех малых элементов получим полную энергию деформации:

    Закон сохранения энергии W = U дает:

    .

    Это соотношение и называется принципом возможных перемещений (его называют также принципом виртуальных перемещений). Аналогично можно рассмотреть случай, когда действуют еще и касательные напряжения. Тогда можно получить, что к энергии деформации W добавится следующее слагаемое:

    Здесь  - касательное напряжение,  -сдвиг малого элемента. Тогда принцип возможных перемещений примет вид:

    В отличие от предыдущей формы записи закона сохранения энергии здесь нет предположения о том, что силы начинают возрастать постепенно, и возрастают они пропорционально перемещениям

    7) Эффект Пуассона.

    Рассмотрим картину удлинения образца:

    Явление укорочения элемента тела поперек направления удлинения называется эффектом Пуассона .

    Найдем продольную относительную деформацию.

    Поперечная относительная деформация будет:

    Коэффициентом Пуассона называется величина:

    Для изотропных материалов (сталь, чугун, бетон) коэффициент Пуассона

    Это означает, что в поперечном направлении деформация меньше продольной.

    Примечание : современные технологии могут создать композиционные материалы, у которых коэффициент Пуассон >1, то есть поперечная деформация будет больше, чем продольная. Например, это имеет место для материала, армированного жесткими волокнами под малым углом
    <<1 (см. рис.8.8.). Оказывается, что коэффициент Пуассона при этом почти пропорционален величине
    , т.е. чем меньше, тем больше коэффициент Пуассона.

    Рис.8.8. Рис.8.9

    Еще более удивительным является материал, приведенный на (рис.8.9.), причем для такого армирования имеет место парадоксальный результат – продольное удлинение ведет к увеличению размеров тела и в поперечном направлении.

    8) Обобщенный закон Гука.

    Рассмотрим элемент, который растягивается в продольном и поперечном направлениях. Найдем деформацию, возникающую в этих направлениях.

    Вычислим деформацию , возникающую от действия:

    Рассмотрим деформацию от действия , которая возникает в результате эффекта Пуассона:

    Общая деформация будет:

    Если действует и , то добавиться еще одно укорочение в направлении осиx
    .

    Следовательно:

    Аналогично:

    Эти соотношения называются обобщенным законом Гука.

    Интересно, что при записи закона Гука делается предположение о независимости деформаций удлинения от деформаций сдвига (о независимости от касательных напряжений, что одно и то же) и наоборот. Эксперименты хорошо подтверждают эти предположения. Забегая вперед, отметим, что прочность напротив сильно зависит от сочетания касательных и нормальных напряжений.

    Примечание: Приведенные выше законы и предположения подтверждаются многочисленными прямыми и косвенными экспериментами, но, как и все другие законы, имеют ограниченную область применимости.