» » Внешние силы вызывающие плоский изгиб. Понятие о деформации изгиба

Внешние силы вызывающие плоский изгиб. Понятие о деформации изгиба

При прямом чистом изгибе бруса в его поперечных сечениях возникают только нормальные напряжения. Когда величина изгибающего момента М в сечении стержня меньше некоторого значения, эпюра, характеризующая распределение нормальных напряжений вдоль оси у поперечного сечения, перпендикулярной нейтральной оси (рис. 11.17, а), имеет вид, показанный на рис. 11.17, б. Наибольшие напряжения при этом равны По мере увеличения изгибающего момента М нормальные напряжения возрастают, пока наибольшие их значения (в волокнах, наиболее удаленных от нейтральной оси) становятся равными пределу текучести (рис. 11.17, в); при этом изгибающий момент равен опасному значению:

При увеличении изгибающего момента сверх опасного значения напряжения, равные пределу текучести возникают не только в волокнах, наиболее удаленных от нейтральной оси, но и в некоторой зоне поперечного сечения (рис. 11.17, г); в этой зоне материал находится в пластическом состоянии. В средней части сечения напряжения меньше предела текучести, т. е. материал в этой части находится еще в упругом состоянии.

При дальнейшем увеличении изгибающего момента пластическая зона распространяется в сторону нейтральной оси, а размеры упругой зоны уменьшаются.

При некотором предельном значении изгибающего момента , соответствующем полному исчерпанию несущей способности сечения стержня на изгиб, упругая зона исчезает, а зона пластического состояния занимает всю площадь поперечного сечения (рис. 11.17, д). При этом в сечении образуется так называемый пластический шарнир (или шарнир текучести).

В отличие от идеального шарнира, который не воспринимает момента, в пластическом шарнире действует постоянный момент Пластический шарнир является односторонним: он исчезает при действии на стержень моментов обратного (по отношению к ) знака или при разгрузке балки.

Для определения величины предельного изгибающего момента выделим в части поперечного сечения балки, расположенной над нейтральной осью, элементарную площадку отстоящую на расстоянии от нейтральной оси, а в части, расположенной под нейтральной осью, - площадку отстоящую на расстоянии от нейтральной оси (рис. 11.17, а).

Элементарная нормальная сила, действующая на площадку в предельном состоянии, равна а ее момент относительно нейтральной оси равен аналогично момент нормальной силы действующей на площадку равен Оба эти момента имеют одинаковые знаки. Величина предельного момента равна моменту всех элементарных сил относительно нейтральной оси:

где - статические моменты соответственно верхней и нижней частей поперечного сечения относительно нейтральной оси .

Сумму называют осевым пластическим моментом сопротивления и обозначают

(10.17)

Следовательно,

(11.17)

Продольная сила в поперечном сечении при изгибе равна нулю, а потому площадь сжатой зоны сечения равняется площади растянутой зоны. Таким образом, нейтральная ось в сечении, совпадающем с пластическим шарниром, делит это поперечное сечение на две равновеликие части. Следовательно, при несимметричном поперечном сечении нейтральная ось не проходит в предельном состоянии через центр тяжести сечения.

Определим по формуле (11.17) величину предельного момента для стержня прямоугольного сечения высотой h и шириной b:

Опасное значение момента при котором эпюра нормальных напряжений имеет вид, изображенный на рис. 11.17, в, для прямоугольного сечения определяется по формуле

Отношение

Для круглого сечения отношение а для двутаврового

Если изгибаемый брус является статически определимым, то после снятия нагрузки, вызвавшей в нем момент изгибающий момент в его поперечном сечении равняется нулю. Несмотря на это, нормальные напряжения в поперечном сечении не исчезают. На эпюру нормальных напряжений в пластической стадии (рис. 11.17, е) накладывается эпюра напряжений в упругой стадии (рис. 11.17, е), аналогичная эпюре, изображенной на рис. 11.17,б, так как при разгрузке (которую можно рассматривать как нагрузку моментом обратного знака) материал ведет себя как упругий.

Изгибающий момент М, соответствующий эпюре напряжений, показанный на рис. 11.17, е, по абсолютной величине равен так как только при этом условии в поперечном сечении бруса от действия момента и М суммарный момент равен нулю. Наибольшее напряжение на эпюре (рис. 11.17, е) определяется из выражения

Суммируя эпюры напряжений, показанные на рис. 11.17, д,е, получаем эпюру, изображенную на рис. 11.17, ж. Эта эпюра характеризует распределение напряжений после снятия нагрузки, вызывавшей момент При такой эпюре изгибающий момент в сечении (а также и продольная сила) равняется нулю.

Изложенная теория изгиба за пределом упругости используется не только в случае чистого изгиба, но и в случае поперечного изгиба, когда в поперечном сечении балки кроме изгибающего момента действует также поперечная сила.

Определим теперь предельное значение силы Р для статически определимой балки, изображенной на рис. 12.17, а. Эпюра изгибающих моментов для этой балки показана на рис. 12.17,б. Наибольший изгибающий момент возникает под грузом где он равен Предельное состояние, соответствующее полному исчерпанию несущей способности балки, достигается тогда, когда в сечении под грузом возникает пластический шарнир, в результате чего балка превращается в механизм (рис. 12.17, в).

При этом изгибающий момент в сечении под грузом равняется

Из условия находим [см. формулу (11.17)]

Теперь вычислим предельную нагрузку для статически неопределимой балки. Рассмотрим в качестве примера два раза статически неопределимую балку постоянного сечения, изображенную на рис. 13.17, а. Левый конец А балки жестко защемлен, а правый конец В закреплен против поворота и вертикального смещения.

Если напряжения в балке не превышают предела пропорциональности, то эпюра изгибающих моментов имеет вид, показанный на рис. 13.17, б. Она построена по результатам расчета балки обычными методами, например с помощью уравнений трех моментов. Наибольший изгибающий момент равный возникает в левом опорном сечении рассматриваемой балки. При значении нагрузки изгибающий момент в этом сечении достигает опасного значения вызывающего появление напряжений, равных пределу текучести, в волокнах балки, наиболее удаленных от нейтральной оси.

Увеличение нагрузки сверх указанной величины приводит к тому, что в левом опорном сечении А изгибающий момент становится равным предельному значению и в этом сечении появляется пластический шарнир. Однако несущая способность балки полностью еще не исчерпывается.

При дальнейшем возрастании нагрузки до некоторого значения пластические шарниры появляются также в сечениях В и С. В результате появления трех шарниров балка, вначале дважды статически неопределимая, становится геометрически изменяемой (превращается в механизм). Такое состояние рассматриваемой балки (когда в ней возникают три пластических шарнира) является предельным и соответствует полному исчерпанию ее несущей способности; дальнейшее увеличение нагрузки Р становится невозможным.

Величину предельной нагрузки можно установить без исследования работы балки в упругой стадии и выяснения последовательности образования пластических шарниров.

Значения изгибающих моментов в сечениях. А, В и С (в которых возникают пластические шарниры) в предельном состоянии равны соответственно и, следовательно, эпюра изгибающих моментов при предельном состоянии балки имеет вид, изображенный на рис. 13.17, в. Эту эпюру можно представить состоящей из двух эпюр: первая из них (рис. 13.17, г) представляет собой прямоугольник с ординатами и вызвана моментами приложенными по концам простой балки, лежащей на двух опорах (рис. 13.17, д); вторая эпюра (рис. 13.17, е) представляет собой треугольник с наибольшей ординатой и вызвана грузом действующим на простую балку (рис. 13.17, ж.

Известно, что сила Р, действующая на простую балку, вызывает в сечении под грузом изгибающий момент где а и - расстояния от груза до концов балки. В рассматриваемом случае (рис.

И, следовательно, момент под грузом

Но этот момент, как показано (рис. 13.17, е), равняется

Аналогичным образом устанавливаются предельные нагрузки для каждого пролета многопролетной статически неопределимой балки. В качестве примера рассмотрим четырежды статически неопределимую балку постоянного сечения, изображенную на рис. 14.17, а.

В предельном состоянии, соответствующем полному исчерпанию несущей способности балки в каждом ее пролете, эпюра изгибающих моментов имеет вид, показанный на рис. 14.17, б. Эту эпюру можно рассматривать состоящей из двух эпюр, построенных в предположении, что каждый пролет представляет собой простую балку, лежащую на двух опорах: одной эпюры (рис. 14.17, в), вызванной моментами действующими в опорных пластических шарнирах, и второй (рис. 14.17, г), вызванной предельными нагрузками, приложенными в пролетах.

Из рис. 14.17, г устанавливаем:

В этих выражениях

Полученное значение предельной нагрузки для каждого пролета балки не зависит от характера и величин нагрузок в остальных пролетах.

Из разобранного примера видно, что расчет статически неопределимой балки по несущей способности оказывается проще, чем расчет по упругой стадии.

Несколько иначе проводится расчет неразрезной балки по несущей способности в тех случаях, когда кроме характера нагрузки в каждом пролете задаются также соотношения между величинами нагрузок в разных пролетах. В этих случаях предельной нагрузкой считается такая, при которой происходит исчерпание несущей способности балки не во всех пролетах, а в одном из ее пролетов.

В качестве примера определим предельную нагрузку для уже рассмотренной четырехпролетной балки (рис. 14.17, а) при следующем заданном соотношении между нагрузками: Из этого соотношения следует, что в предельном состоянии

Используя полученные выражения предельных нагрузок каждого пролета, находим:


При построении эпюры изгибающих моментов М у строителей при­нято: ординаты, выражающие в определенном масштабе положительные значения изгибающих моментов, откладывать со стороны растянутых волокон, т.е. - вниз , а отрицательные - вверх от оси балки. Поэтому говорят, что строители строят эпюры на растянутых волокнах. У механиков положительные значения и поперечной силы и изгибающего момента откладываются вверх. Механики строят эпюры на сжатых волокнах.

Главные напряжения при изгибе. Эквивалентные напряжения .

В общем случае прямого изгиба в поперечных сечениях балки возникают нормальные и касательные напряжения . Эти напряжения изменяются как по длине, так и по высоте балки.

Таким образом, в случае изгиба имеет место плоское напряженное состояние.

Рассмотрим схему, где балка нагружена силой Р

Наибольшие нормальные напряжения возникают в крайних, наиболее удаленных от нейтральной линии точках, а касательные напряжения в них отсутствуют. Таким образом, для крайних волокон ненулевыми главными напряжениями являются нормальные напряжения в поперечном сечении.

На уровне нейтральной линии в поперечном сечении балки возникают наибольшие касательные напряжения, а нормальные напряжения равны нулю . значит, в волокнах нейтрального слоя главные напряжения определяются значениями касательных напряжений.

В данной расчетной схеме верхние волокна балки будут растянуты, а нижние – сжаты. Для определения главных напряжений используем известное выражение:

Полный анализ напряженного состояния представим на рисунке.

Анализ напряженного состояния при изгибе

Наибольшее главное напряжение σ 1 находится на верхних крайних волокнах и равно нулю на нижних крайних волокнах. Главное напряжение σ 3 имеет наибольшее по абсолютной величине значение на нижних волокнах.

Траектория главных напряжений зависит от типа нагрузки и способа закрепления балки.


При решении задач достаточно отдельно проверить нормальные и отдельно касательные напряжения. Однако иногда наиболее напряженными оказываются промежуточные волокна, в которых имеются и нормальные, и касательные напряжения. Это происходит в сечениях, где одновременно и изгибающий момент, и поперечная сила достигают больших значений — это может быть в заделке консольной балки, на опоре балки с консолью, в сечениях под сосредоточенной силой или в сечениях с резко меняющейся шириной. К примеру, в двутавровом сечении наиболее опасны места примыкания стенки к полке — там имеются значительные и нормальные, и касательные напряжения.

Материал находится в условиях плоского напряженного состояния и требуется проверка по эквивалентным напряжениям.

Условия прочности балок из пластичных материалов по третьей (теории наибольших касательных напряжений) и четвертой (теория энергии формоизменений) теориям прочности.

Как правило,в прокатных балках эквивалентные напряжения не превышают нормальных напряжений в крайних волокнах и специальной проверки не требуется. Другое дело - составные металлические балки, у которых стенка тоньше , чем у прокатных профилей при той же высоте. Чаще применяются сварные составные балки из стальных листов. Расчет подобных балок на прочность: а) подбор сечения — высоты, толщины, ширины и толщины поясов балки; б) проверка прочности по нормальным и касательным напряжениям; в) проверка прочности по эквивалентным напряжениям.

Определение касательных напряжений в двутавровом сечении . Рассмотрим сечение двутавра. S x =96,9 см 3 ; Yх=2030 см 4 ; Q=200 кН

Для определения касательного напряжения применяется формула ,где Q — поперечная сила в сечении, S x 0 – статический момент части поперечного сечения, расположенной по одну сторону от слоя, в котором определяются касательные напряжения, I x – момент инерции всего поперечного сечения, b – ширина сечения в том месте, где определяется касательное напряжение

Вычислим максимальное касательное напряжение:

Вычислим статический момент для верхней полки:

Теперь вычислим касательные напряжения:

Строим эпюру касательных напряжений:

Рассмотрим сечение стандартного профиля в виде двутавра и определим касательные напряжения , действующие параллельно поперечной силе:

Рассчитаем статические моменты простых фигур:

Эту величину можно вычислить и иначе , используя то обстоятельство, что для двутаврового и корытного сечения в дан статический момент половины сечения. Для этого необходимо вычесть из известной величины статического момента величину статического момента до линии А 1 В 1:

Касательные напряжения в месте примыкания полки к стенке изменяются скачкообразно , так как резко изменяется толщина стенки от t ст до b .

Эпюры касательных напряжений в стенках корытного, полого прямоугольного и других сечений имеют тот же вид, что и в случае двутаврового сечения. В формулу входит статический момент заштрихованной части сечения относительно оси Х, а в знаменателе ширина сечения (нетто) в том слое, где определяется касательное напряжение.

Определим касательные напряжения для круглого сечения.

Так как у контура сечения касательные напряжения должны быть направлены по касательной к контуру, то в точках А и В у концов какой-либо параллельной диаметру хорде АВ, касательные напряжения направлены перпендикулярно радиусам ОА и ОВ. Следовательно, направления касательных напряжений в точках А , В, К сходятся в некоторой точке Н на оси Y.

Статический момент отсеченной части:

То есть касательные напряжения меняются по параболическому закону и будут максимальны на уровне нейтральной линии, когда у 0 =0

Формула для определения касательных напряжений (формула )

Рассмотрим прямоугольное сечение

На расстоянии у 0 от центральной оси проведем сечение 1-1 и определим касательные напряжения. Статический момент площади отсеченной части:

Следует иметь в виду, что принципиально безразлично , брать статический момент площади заштрихованной или остальной части поперечного сечения. Оба статических момента равны и противоположны по знаку , поэтому их сумма, которая представляет статический момент площади всего сечения относительно нейтральной линии, а именно центральной оси х, будет равна нулю.

Момент инерции прямоугольного сечения:

Тогда касательные напряжения по формуле

Переменная у 0 входит в формулу во второй степени, т.е. касательные напряжения в прямоугольном сечении изменяются по закону квадратной параболы.

Касательные напряжения достигнут максимума на уровне нейтральной линии, т.е. когда у 0 =0:

, где А -площадь всего сечения.

Условие прочности по касательным напряжениям имеет вид:

, где S x 0 – статический момент части поперечного сечения, расположенной по одну сторону от слоя, в котором определяются касательные напряжения, I x – момент инерции всего поперечного сечения, b – ширина сечения в том месте, где определяется касательное напряжение,Q -поперечная сила, τ — касательное напряжение, [τ] — допускаемое касательное напряжение.

Данное условие прочности позволяет производить три вида расчета (три типа задач при расчете на прочность):

1. Проверочный расчет или проверка прочности по касательным напряжениям:

2. Подбор ширины сечения (для прямоугольного сечения):

3.Определение допускаемой поперечной силы (для прямоугольного сечения):

Для определения касательных напряжений рассмотрим балку, нагруженную силами.

Задача по определению напряжений всегда статически неопределима и требует привлечения геометрических и физических уравнений. Однако можно принять такие гипотезы о характере распределения напряжений , что задача станет статически определимой.

Двумя бесконечно близкими поперечными сечениями 1-1 и 2-2 выделим элемент dz, изобразим его в крупном масштабе, затем проведем продольное сечение 3-3.

В сечениях 1–1 и 2–2 возникают нормальные σ 1 , σ 2 напряжения , которые определяются по известным формулам:

где М — изгибающий момент в поперечном сечении, dМ — приращение изгибающего момента на длине dz

Поперечная сила в сечениях 1–1 и 2–2 направлена вдоль главной центральной оси Y и, очевидно, представляет сумму вертикальных составляющих внутренних касательных напряжений, распределенных по сечению . В сопротивлении материалов обычно принимается допущение о равномерном их распределении по ширине сечения.

Для определения величины касательных напряжений в какой-либо точке поперечного сечения, расположенного на расстоянии у 0 от нейтральной оси Х, проведем через эту точку плоскость, параллельную нейтральному слою (3-3), и вынесем отсеченный элемент. Будем определять напряжение, действующее по площадке АВСД.

Спроецируем все силы на ось Z

Равнодействующая внутренних продольных сил по правой грани будет равна:

где А 0 – площадь фасадной грани, S x 0 – статический момент отсеченной части относительно оси Х . Аналогично на левой грани:

Обе равнодействующие направлены навстречу друг другу, поскольку элемент находится в сжатой зоне балки. Их разность уравновешивается касательными силами на нижней грани 3-3.

Предположим, что касательные напряжения τ распределены по ширине поперечного сечения балки b равномерно . Такое допущение тем вероятнее, чем меньше ширина по сравнению с высотой сечения. Тогда равнодействующая касательных сил dT равна значению напряжений, умноженному на площадь грани:

Составим теперь уравнение равновесия Σz=0:

или, откуда

Вспомним дифференциальные зависимости , согласно которым Тогда получаем формулу:

Эта формула получила название формулы . Эта формула получена в 1855 г. Здесь S x 0 – статический момент части поперечного сечения, расположенной по одну сторону от слоя, в котором определяются касательные напряжения, I x – момент инерции всего поперечного сечения, b – ширина сечения в том месте, где определяется касательное напряжение, Q -поперечная сила в сечении.

— условие прочности при изгибе, где

- максимальный момент (по модулю) с эпюры изгибающих моментов; - осевой момент сопротивления сечения,геометрическая характеристика; - допускаемое напряжение (σ adm)

- максимальное нормальное напряжение.

Если расчет ведется по методу предельных состояний ,то в расчет вместо допускаемого напряжения вводится расчетное сопротивление материала R.

Типы расчетов на прочность при изгибе

1. Проверочный расчет или проверка прочности по нормальным напряжениям

2. Проектный расчет или подбор сечения

3. Определение допускаемой нагрузки (определение грузоподъемност и или эксплуатационной несущей способности)

При выводе формулы для вычисления нормальных напряжений рассмотрим такой случай изгиба, когда внутренние силы в сечениях балки приводятся только к изгибающему моменту , а поперечная сила оказывается равной нулю . Этот случай изгиба носит название чистого изгиба . Рассмотрим средний участок балки, подвергающийся чистому изгибу.

В нагруженном состоянии балка прогибается так,что ее нижние волокна удлиняются,а верхние укорачиваются.

Поскольку часть волокон балки растягивается, а часть сжимается, причем переход от растяжения к сжатию происходит плавно, без скачков , в средней части балки находится слой, волокна которого только искривляются, но не испытывают ни растяжения, ни сжатия. Такой слой называют нейтральным слоем. Линия, по которой нейтральный слой пересекается с поперечным сечением балки, называется нейтральной линией или нейтральной осью сечения. Нейтральные линии нанизаны на ось балки. Нейтральная линия — это линия, в которой нормальные напряжения равны нулю.

Линии, проведенные на боковой поверхности балки перпендикулярно оси, остаются плоскими при изгибе. Эти опытные данные позволяют положить в основу выводов формул гипотезу плоских сечений (гипотеза ) . Согласно этой гипотезе сечения балки плоские и перпендикулярные к ее оси до изгиба, остаются плоскими и оказываются перпендикулярными изогнутой оси балки при ее изгибе.

Допущения для вывода формул нормального напряжения: 1) Выполняется гипотеза плоских сечений. 2) Продольные волокна друг на друга не давят (гипотеза о ненадавливании) и, следовательно, каждое из волокон находится в состоянии одноосного растяжения или сжатия. 3) Деформации волокон не зависят от их положения по ширине сечения. Следовательно, и нормальные напряжения, изменяясь по высоте сечения, остаются по ширине одинаковыми. 4) Балка имеет хотя бы одну плоскость симметрии, и все внешние силы лежат в этой плоскости. 5) Материал балки подчиняется закону Гука, причем модуль упругости при растяжении и сжатии одинаков. 6) Соотношения между размерами балки таковы, что она работает в условиях плоского изгиба без коробления или скручивания.

Рассмотрим балку произвольного сечения, но имеющую ось симметрии.Изгибающий момент представляет собой результирующий момент внутренних нормальных сил , возникающих на бесконечно малых площадках и может быть выражен в интегральном виде: (1), где y — плечо элементарной силы относительно оси х

Формула (1) выражает статическую сторону задачи об изгибе прямого бруса, но по ней по известному изгибающему моменту нельзя определить нормальные напряжения, пока не установлен закон их распределения.

Выделим на среднем участке балки и рассмотрим участок длиной dz, подвергающийся изгибу. Изобразим его в укрупненном масштабе.

Сечения, ограничивающие участок dz, параллельны друг другу до деформации , а после приложения нагрузки повернутся вокруг своих нейтральных линий на угол . Длина отрезка волокон нейтрального слоя при этом не изменится и будет равна:, где -это радиус кривизны изогнутой оси балки. А вот любое другое волокно, лежащее ниже или выше нейтрального слоя, изменит свою длину . Вычислим относительное удлинение волокон, находящихся от нейтрального слоя на расстоянии у. Относительное удлинение — это отношение абсолютной деформации к первоначальной длине,тогда:

Сократим на и приведем подобные члены, тогда получим:(2) Эта формула выражает геометрическую сторону задачи о чистом изгибе: деформации волокон прямо пропорциональны их расстояниям до нейтрального слоя.

Теперь перейдем к напряжениям , т.е. будем рассматривать физическую сторону задачи. в соответствии с допущением о ненадавливании волокон используем при осевом растяжении-сжатии:, тогда с учетом формулы (2) имеем (3), т.е. нормальные напряжения при изгибе по высоте сечения распределяются по линейному закону . На крайних волокнах нормальные напряжения достигают максимального значения, а в центре тяжести сечения равны нулю. Подставим (3) в уравнение (1) и вынесем за знак интеграла дробь как постоянную величину, тогда имеем. Но выражение - это осевой момент инерции сечения относительно оси х - I х . Его размерность см 4 , м 4

Тогда ,откуда (4) ,где - это кривизна изогнутой оси балки, а - жесткость сечения балки при изгибе.

Подставим полученное выражение кривизны (4) в выражение (3) и получим формулу для вычисления нормальных напряжений в любой точке поперечного сечения: (5)

Т.о. максимальные напряжения возникают в точках, наиболее удаленных от нейтральной линии. Отношение (6) называют осевым моментом сопротивления сечения . Его размерность см 3 , м 3 . Момент сопротивления характеризует влияние формы и размеров поперечного сечения на величину напряжений.

Тогда максимальные напряжения: (7)

Условие прочности при изгибе: (8)

При поперечном изгибе действуют не только нормальные, но и касательные напряжения ,т.к. имеется поперечная сила . Касательные напряжения усложняют картину деформирования , они приводят к искривлению поперечных сечений балки, в результате чего нарушается гипотеза плоских сечений . Однако исследования показывают, что искажения, которые привносят касательные напряжения, незначительно влияют на нормальные напряжения,подсчитанные по формуле (5) . Таким образом,при определении нормальных напряжений в случае поперечного изгиба теория чистого изгиба вполне применима.

Нейтральная линия. Вопрос о положении нейтральной линии.

При изгибе отсутствует продольная сила, поэтому можно записать Подставим сюда формулу нормальных напряжений (3) и получим Так как модуль продольной упругости материала балки не равняется нулю и изогнутая ось балки имеет конечный радиус кривизны, остается положить, что этот интеграл представляет собой статический момент площади поперечного сечения балки относительно нейтральной линии-оси х , и, поскольку он равен нулю, то нейтральная линия проходит через центр тяжести сечения.

Условие (отсутствие момента внутренних сил относительно силовой линии) даст или с учетом (3) . По тем же соображениям (см. выше) . В подынтегральном выражении — центробежный момент инерции сечения относительно осей х и у равен нулю , значит, эти оси являются главными и центральными и составляют прямой угол. Следовательно, силовая и нейтральная линии пр прямом изгибе взаимно перпендикулярны.

Установив положение нейтральной линии , несложно построить эпюру нормальных напряжений по высоте сечения. Ее линейный характер определяется уравнением первой степени.

Характер эпюры σ для симметричных сечений относительно нейтральной линии, М<0

Изгибом называется деформация , связанная с искривлением оси бруса (или изменением его кривизны). Прямой брус, воспринимающий в основном изгибающую нагрузку, называется балкой. В общем случае при изгибе в поперечных сечениях балки имеют место два внутренних силовых фактора: перерезывающая сила Q и изгибающий момент. Если в поперечных сечениях балки действует только один силовой фактор, а , то изгиб называется чистым. Если в поперечном сечении балки действуют изгибающий момент и поперечная сила, то изгиб называется поперечным.

Изгибающий моменти поперечная сила Q определяются методом сечений. В произвольном поперечном сечении бруса величина Q численно равна алгебраической сумме проекций на вертикальную ось всех внешних (активных и реактивных) сил приложенных к отсеченной части; изгибающий моментв произвольном поперечном сечении бруса численно равен алгебраической сумме моментоЕ всех внешних сил и пар сил, расположенных по одну сторону от сечения.

Для системы координат, ноказанно) на рис. 2.25, изгибающий момент от нагрузок, расположенных в плоскости хОу, действует относительно оси г, а перерезывающая сила – по направлению оси у. Поэтому обозначим перерезывающую силу , изгибающий момент

Если поперечная нагрузка действует так, что ее плоскость совпадает с плоскостью, содержащей одну из главных центральных осей инерции сечений, то изгиб называетсяпрямым.

Для изгиба характерны два вида перемещений:

  • искривление продольной оси бруса Ох, соответствующее перемещениям точек оси бруса в направлении Оу,
  • поворот в пространстве одного поперечного сечения относительно другого, т.е. поворот сечения относительно оси г в плоскости XОу.

Рис. 2.25

Дифференциальные и интегральные зависимости при изгибе

Пусть на балку действует непрерывная распределенная нагрузка q(x) (рис. 2.26, а). Двумя поперечными сечениями т–т и п–п выделим участок балки длиной dx. Полагаем, что на этом участке д(х) = const ввиду малости длины участка.

Внутренние силовые факторыи, действующие в сечении п–п, получают некоторое приращение и будут равны. Рассмотрим равновесие элемента (рис. 2.26, б):

а) , отсюда

Рис. 2.26

Членможно опустить, так как он имеет второй порядок малости по сравнению с остальными. Тогда

Подставляя равенство (2.69) в выражение (2.68), получаем

Выражения (2.68)-(2.70) называются дифференциальными зависимостями при изгибе балки. Они справедливы только для балок с первоначально прямолинейной продольной осью.

Правило знаков для и носит условный характер:

Графическииизображаются в виде эпюр. Положительные значения откладываются вверх от оси бруса, отрицательные – вниз.

Рис. 2.27

Нормальные напряжения при чистом изгибе балки

Рассмотрим модель чистого изгиба (рис. 2.28, а, б). После окончания процесса нагружения продольная ось балки X искривится, а ее поперечные сечения повернутся относительно своего первоначального положения на уголг/О. Для выяснения закона распределения нормальных напряжений по поперечному сечению балки примем следующие допущения:

  • при чистом прямом изгибе сира ведлива гипотеза плоских сечений: поперечные сечения бруса, плоские и нормальные к его оси до деформации, остаются плоскими и нормальными к его оси во время и после деформации;
  • волокна бруса при его деформации не надавливают друг на друга;
  • материал работает в пределах упругости.

В результате деформации изгиба ось х искривится и сечениеповернется относительно условно защемленного сеченияна угол. Определим продольную деформацию произвольного волокна АВ, расположенного на расстоянии у от продольной оси (см. рис. 2.28, а).

Пусть – радиус кривизны оси бруса (см.рис. 2.28, б). Абсолютное удлинение волокна АВ равно. Относительное удлинение этого волокна

Так как согласно допущению волокна друг на друга не надавливают, то они находятся в состоянии одноосного растяжения или сжатия. Используя закон Гука, получим зависимость изменения напряжений по поперечному сечению батки:

Величинапостоянна для данного сечения, поэтому изменяется по высоте сечения в зависимости от координа-

Рис. 2.28

Рис. 2.29

ты у. При изгибе часть волокон бруса растягивается, часть – сжимается. Границей между областями растяжения и сжатия является слой волокон, который лишь искривляется, не изменяя своей длины. Этот слой называется нейтральным.

Напряжения σ* в нейтральном слое должны равняться нулю, соответственно Этот результат следует из выражения (2.71) при. Рассмотрим выражения дляПоскольку при чистом изгибе продольная сила равна нулю, то запишем:(рис. 2.29), а так как", то , т.е.. Отсюда следует, что ось Οζ является центральной. Эта ось в поперечном сечении называется нейтральной линией. Для чистого прямого изгиба Тогда

Поскольку , то

Отсюда следует, что оси Οζ и Оу сечения являются не только центральными, но и главными осями инерции. Это предположение делалось выше при определении понятия "прямой изгиб". Подставив в выражение для изгибающего моментазначениеиз выражения (2.71), получим

Или , (2.72)

где– момент инерции относительно главной центральной оси сечения Οζ.

Подставляя равенство (2.72) в выражение (2.71), получаем

Выражение (2.73) определяет закон изменения напряженияпо сечению. Видно, чтоизменяется не по координате 2 (т.е. по ширине сечения нормальные напряжения постоянны), а по высоте сечения в зависимости от координаты у

Рис. 2. 30

(рис. 2.30). Значения возникают в волокнах, наиболее удаленных от нейтральной линии, т.е. при . Тогда . Обозначив , получим

где – момент сопротивления сечения изгибу.

Воспользовавшись формулами для главных центральных моментов инерции основных геометрических форм сечений, получим следующие выражения для:

Прямоугольное сечение: , где – сторона, параллельная оси г; h – высота прямоугольника. Так как ось г проходит по середине высоты прямоугольника, то

Тогда момент сопротивления прямоугольника

При расчете изгибаемых элементов строительных конструкций на прочность применяется метод расчета по предельным состояниям.

В большинстве случаев основное значение при оценке прочности балок и рам имеют нормальные напряжения в поперечных сечениях. При этом наибольшие нормальные напряжения, действующие в крайних волокнах балки, не должны превышать некоторой допустимой для данного материала величины. В методе расчета по предельным состояниям эта величина принимается равной расчетному сопротивлению R, умноженному на коэффициент условий работы у с.

Условие прочности имеет следующий вид:

Значения R и у с для различных материалов приведены в СНиП по строительным конструкциям.

Для балок из пластичного материала, одинаково сопротивляющегося растяжению и сжатию, целесообразно использовать сечения с двумя осями симметрии. В этом случае условие прочности (7.33) с учетом формулы (7.19) записывается в виде

Иногда по конструктивным соображениям применяются балки с несимметричным сечением типа тавра, разнополочного двутавра и т.п. В этих случаях условие прочности (7.33) с учетом (7.17) записывается в виде

В формулах (7.34) и (7.35) W z и W HM - моменты сопротивления сечения относительно нейтральной оси Oz„ М нб - наибольший по абсолютной величине изгибающий момент от действия расчетных нагрузок, т.е. с учетом коэффициента надежности по нагрузке у^.

Сечение балки, в котором действует наибольший по абсолютной величине изгибающий момент, называется опасным сечением.

При расчете на прочность элементов конструкций, работающих на изгиб, решаются следующие задачи: проверка прочности балки; подбор сечения; определение несущей способности (грузоподъемности) балки, т.е. определение значений нагрузок, при которых наибольшие напряжения в опасном сечении балки не превышают значения y c R.

Решение первой задачи сводится к проверке выполнения условий прочности при известных нагрузках, форме и размерах сечения и свойствах материала.

Решение второй задачи сводится к определению размеров сечения заданной формы при известных нагрузках и свойствах материала. Вначале из условий прочности (7.34) или (7.35) определяется величина требуемого момента сопротивления

а затем устанавливаются размеры сечения.

Для прокатных профилей (двутавры, швеллеры) по величине момента сопротивления подбор сечения производится по сортаменту. Для непрокатных сечений устанавливаются характерные размеры сечения.

При решении задачи по определению грузоподъемности балки вначале из условий прочности (7.34) или (7.35) находится величина наибольшего расчетного изгибающего момента по формуле

Затем изгибающий момент в опасном сечении выражается через приложенные к балке нагрузки и из полученного выражения определяются соответствующие величины нагрузок. Например, для стальной двутавровой балки 130, изображенной на рис. 7.47, при R = 210 МПа, у с = 0,9, W z = 472 см 3 находим

По эпюре изгибающих моментов находим


Рис. 7.47

В балках, нагруженных большими по величине сосредоточенными силами, близко расположенными к опорам (рис. 7.48), изгибающий момент М нб может оказаться сравнительно небольшим, а поперечная сила 0 нб по абсолютной величине может быть значительной. В этих случаях необходимо производить проверку прочности балки по наибольшим касательным напряжениям т нб. Условие прочности по касательным напряжениям можно записать в виде

где R s - расчетное сопротивление материала балки при сдвиге. Значения R s для основных строительных материалов приведены в соответствующих разделах СНиП.

Касательные напряжения могут достигать значительной величины в стенках двутавровых балок, особенно в тонких стенках составных балок.

Расчет на прочность по касательным напряжениям может иметь решающее значение для деревянных балок, так как дерево плохо сопротивляется скалыванию вдоль волокон. Так, например, для сосны расчетное сопротивление растяжению и сжатию при изгибе R = 13 МПа, а при скалывании вдоль волокон R CK = 2,4 МПа. Такой расчет необходим также при оценке прочности элементов соединений составных балок - сварных швов, болтов, заклепок, шпонок и т.п.

Условие прочности на скалывание вдоль волокон для деревянной балки прямоугольного сечения с учетом формулы (7.27) можно записать в виде

Пример 7.15. Для балки, показанной на рис. 7.49, а, построим эпюры Q y и M v подберем сечение балки в виде стального прокатного двутавра и построим эпюры с х и т в сечениях с наибольшими Q y и M z . Коэффициент надежности по нагрузке y f = 1,2, расчетное сопротивление R = 210 МПа = 21 кН/см 2 , коэффициент условий работы у с = 1,0.

Расчет начинаем с определения опорных реакций:

Вычислим значения Q y и M z в характерных сечениях балки.



Поперечные силы в пределах каждого участка балки являются постоянными величинами и имеют скачки в сечениях под силой и на опоре В. Изгибающие моменты изменяются по линейному закону. Эпюры Q y и M z приведены на рис. 7.49, б, в.

Опасным является сечение в середине пролета балки, где изгибающий момент имеет наибольшее значение. Вычислим расчетное значение наибольшего изгибающего момента:

Требуемый момент сопротивления равен

По сортаменту принимаем сечение 127 и выписываем необходимые геометрические характеристики сечения (рис. 7.50, а):



Вычислим значения наибольших нормальных напряжений в опасном сечении балки и проверим ее прочность:

Прочность балки обеспечена.

Касательные напряжения имеют наибольшие значения на участке балки, где действует наибольшая по абсолютной величине поперечная сила (2 нб = 35 кН.

Расчетное значение поперечной силы

Вычислим значения касательных напряжений в стенке двутавра на уровне нейтральной оси и на уровне сопряжения стенки с полками:


Эпюры с х и х, в сечении л: = 2,4 м (справа) приведены на рис. 7.50, б, в.

Знак касательных напряжений принят отрицательным, как соответствующий знаку поперечной силы.

Пример 7.16. Для деревянной балки прямоугольного поперечного сечения (рис. 7.51, а) построим эпюры Q и M z , определим высоту сечения h из условия прочности, приняв R = = 14 МПа, уу= 1,4 и у с = 1,0, и проверим прочность балки на скалывание по нейтральному слою, приняв R CK = 2,4 МПа.

Определим опорные реакции:

Вычислим значения Q v и M z
в характерных сечениях балки.


В пределах второго участка поперечная сила обращается в нуль. Положение этого сечения находим из подобия треугольников на эпюре Q y:

Вычислим экстремальное значение изгибающего момента в этом сечении:

Эпюры Q y и M z приведены на рис. 7.51, б, в.

Опасным является сечение балки, где действует максимальный изгибающий момент. Вычислим расчетное значение изгибающего момента в этом сечении:

Требуемый момент сопротивления сечения

Выразим с помощью формулы (7.20) момент сопротивления через высоту сечения h и приравняем его требуемому моменту сопротивления:

Принимаем прямоугольное сечение 12x18 см. Вычислим геометрические характеристики сечения:

Определим наибольшие нормальные напряжения в опасном сечении балки и проверим ее прочность:

Условие прочности выполняется.

Для проверки прочности балки на скалывание вдоль волокон надо определить значения максимальных касательных напряжений в сечении с наибольшей по абсолютной величине поперечной силой 0 нб = 6 кН. Расчетное значение поперечной силы в этом сечении

Максимальные касательные напряжения в поперечном сечении действуют на уровне нейтральной оси. Согласно закону парности они действуют также в нейтральном слое, стремясь вызвать сдвиг одной части балки относительно другой части.

Используя формулу (7.27), вычислим значение т тах и проверим прочность балки на скалывание:

Условие прочности на скалывание выполняется.

Пример 7.17. Для деревянной балки круглого сечения (рис. 7.52, а) построим эпюры Q y n M z n определим из условия прочности необходимый диаметр сечения. В расчетах примем R = 14 МПа, уу = 1,4 и у с = 1,0.

Определим опорные реакции:

Вычислим значения Q и М 7 в характерных сечениях балки.


Эпюры Q y и M z приведены на рис. 7.52, б, в. Опасным является сечение на опоре В с наибольшим по абсолютной величине изгибающим моментом М нб = 4 кНм. Расчетное значение изгибающего момента в этом сечении

Вычислим требуемый момент сопротивления сечения:

Используя формулу (7.21) для момента сопротивления круглого сечения, найдем требуемый диаметр:

Примем D= 16 см и определим наибольшие нормальные напряжения в балке:


Пример 7.18. Определим грузоподъемность балки коробчатого сечения 120x180x10 мм, нагруженной согласно схеме на рис. 7.53, а. Построим эпюры с х и т в опасном сечении. Материал балки - сталь марки ВСтЗ, R = 210 МПа = 21 кН/см 2 , У/= U, Ус = °’ 9 -

Эпюры Q y и M z приведены на рис. 7.53, а.

Опасным является сечение балки вблизи заделки, где действует наибольший по абсолютной величине изгибающий момент М нб - Р1 = 3,2 Р.

Вычислим момент инерции и момент сопротивления коробчатого сечения:

Учитывая формулу (7.37) и полученное значение для Л/ нб, определим расчетное значение силы Р:

Нормативное значение силы

Наибольшие нормальные напряжения в балке от действия расчетной силы

Вычислим статический момент половины сечения ^1/2 и статический момент площади поперечного сечения полки S n относительно нейтральной оси:

Касательные напряжения на уровне нейтральной оси и на уровне сопряжения полки со стенками (рис. 7.53, б) равны:


Эпюры о х и т ух в сечении вблизи заделки приведены на рис. 7.53, в, г.

Балка является основным элементом несущей конструкции сооружения. При строительстве важно провести расчет прогиба балки. В реальном строительстве на данный элемент действует сила ветра, нагружение и вибрации. Однако при выполнении расчетов принято принимать во внимание только поперечную нагрузку или проведенную нагрузку, которая эквивалентна поперечной.

Балки в доме

При расчете балка воспринимается как жесткозакрепленный стержень, который устанавливается на двух опорах. Если она устанавливается на трех и более опорах, расчет ее прогиба является более сложным, и провести его самостоятельно практически невозможно. Основное нагружение рассчитывается как сумма сил, которые действуют в направлении перпендикулярного сечения конструкции. Расчетная схема требуется для определения максимальной деформации, которая не должна быть выше предельных значений. Это позволит определить оптимальный материал необходимого размера, сечения, гибкости и других показателей.

Для строительства различных сооружений применяются балки из прочных и долговечных материалов. Такие конструкции могут отличаться по длине, форме и сечению. Чаще всего используются деревянные и металлические конструкции. Для расчетной схемы прогиба большое значение имеет материал элемента. Особенность расчета прогиба балки в данном случае будет зависеть от однородности и структуры ее материала.

Деревянные

Для постройки частных домов, дач и другого индивидуального строительства чаще всего используются деревянные балки. Деревянные конструкции, работающие на изгиб, могут использоваться для потолочных и напольных перекрытий.

Деревянные перекрытия

Для расчета максимального прогиба следует учитывать:

  1. Материал. Различные породы дерева обладают разным показателем прочности, твердости и гибкости.
  2. Форма поперечного сечения и другие геометрические характеристики.
  3. Различные виды нагрузки на материал.

Допустимый прогиб балки учитывает максимальный реальный прогиб, а также возможные дополнительные эксплуатационные нагрузки.

Конструкции из древесины хвойных пород

Стальные

Металлические балки отличаются сложным или даже составным сечением и чаще всего изготавливаются из нескольких видов металла. При расчете таких конструкций требуется учитывать не только их жесткость, но и прочность соединений.

Стальные перекрытия

Металлические конструкции изготавливаются путем соединения нескольких видов металлопроката, используя при этом такие виды соединений:

  • электросварка;
  • заклепки;
  • болты, винты и другие виды резьбовых соединений.

Стальные балки чаще всего применяются для многоэтажных домов и других видов строительства, где требуется высокая прочность конструкции. В данном случае при использовании качественных соединений гарантируется равномерно распределенная нагрузка на балку.

Для проведения расчета балки на прогиб может помочь видео:

Прочность и жесткость балки

Чтобы обеспечить прочность, долговечность и безопасность конструкции, необходимо выполнять вычисление величины прогиба балок еще на этапе проектирования сооружения. Поэтому крайне важно знать максимальный прогиб балки, формула которого поможет составить заключение о вероятности применения определенной строительной конструкции.

Использование расчетной схемы жесткости позволяет определить максимальные изменения геометрия детали. Расчет конструкции по опытным формулам не всегда эффективен. Рекомендуется использовать дополнительные коэффициенты, позволяющие добавить необходимый запас прочности. Не оставлять дополнительный запас прочности – одна из основных ошибок строительства, которая приводит к невозможности эксплуатации здания или даже тяжелым последствиям.

Существует два основных метода расчета прочности и жесткости:

  1. Простой. При использовании данного метода применяется увеличительный коэффициент.
  2. Точный. Данный метод включает в себя использование не только коэффициентов для запаса прочности, но и дополнительные вычисления пограничного состояния.

Последний метод является наиболее точным и достоверным, ведь именно он помогает определить, какую именно нагрузку сможет выдержать балка.

Расчет балок на прогиб

Расчет на жесткость

Для расчета прочности балки на изгиб применяется формула:

M – максимальный момент, который возникает в балке;

W n,min – момент сопротивления сечения, который является табличной величиной или определяется отдельно для каждого вида профиля.

R y является расчетным сопротивлением стали при изгибе. Зависит от вида стали.

γ c представляет собой коэффициент условий работы, который является табличной величиной.

Расчет жесткости или величины прогиба балки является достаточно простым, поэтому расчеты может выполнить даже неопытный строитель. Однако для точного определения максимального прогиба необходимо выполнить следующие действия:

  1. Составление расчетной схемы объекта.
  2. Расчет размеров балки и ее сечения.
  3. Вычисление максимальной нагрузки, которая воздействует на балку.
  4. Определение точки приложения максимальной нагрузки.
  5. Дополнительно балка может быть проверена на прочность по максимальному изгибающему моменту.
  6. Вычисление значения жесткости или максимально прогиба балки.

Чтобы составить расчетную схему, потребуются такие данные:

  • размеры балки, длину консолей и пролет между ними;
  • размер и форму поперечного сечения;
  • особенности нагрузки на конструкцию и точно ее приложения;
  • материал и его свойства.

Если производится расчет двухопорной балки, то одна опора считается жесткой, а вторая – шарнирной.

Расчет моментов инерции и сопротивления сечения

Для выполнения расчетов жесткости потребуется значение момент инерции сечения (J) и момента сопротивления (W). Для расчета момента сопротивления сечения лучше всего воспользоваться формулой:

Важной характеристикой при определении момента инерции и сопротивления сечения является ориентация сечения в плоскости разреза. При увеличении момента инерции увеличивается и показатель жесткости.

Определение максимальной нагрузки и прогиба

Для точного определения прогиба балки, лучше всего применять данную формулу:

q является равномерно-распределенной нагрузкой;

E – модуль упругости, который является табличной величиной;

l – длина;

I – момент инерции сечения.

Чтобы рассчитать максимальную нагрузку, следует учитывать статические и периодические нагрузки. К примеру, если речь идет о двухэтажном сооружении, то на деревянную балку будет постоянно действовать нагрузка от ее веса, техники, людей.

Особенности расчета на прогиб

Расчет на прогиб проводится обязательно для любых перекрытий. Крайне важен точный расчет данного показателя при значительных внешних нагрузках. Сложные формулы в данном случае использовать необязательно. Если использовать соответствующие коэффициенты, то вычисления можно свести к простым схемам:

  1. Стержень, который опирается на одну жесткую и одну шарнирную опору, и воспринимает сосредоточенную нагрузку.
  2. Стержень, который опирается на жесткую и шарнирную опору, и при этом на него действует распределенное нагружение.
  3. Варианты нагружения консольного стержня, который закреплен жестко.
  4. Действие на конструкцию сложной нагрузки.

Применение этого метода вычисления прогиба позволяет не учитывать материал. Поэтому на расчеты не влияют значения его основных характеристик.

Пример подсчета прогиба

Чтобы понять процесс расчета жесткости балки и ее максимального прогиба, можно использовать простой пример проведения расчетов. Данный расчет проводится для балки с такими характеристиками:

  • материал изготовления – древесина;
  • плотность составляет 600 кг/м3;
  • длина составляет 4 м;
  • сечение материала составляет 150*200 мм;
  • масса перекрывающих элементов составляет 60 кг/м²;
  • максимальная нагрузка конструкции составляет 249 кг/м;
  • упругость материала составляет 100 000 кгс/ м²;
  • J равно 10 кг*м².

Для вычисления максимальной допустимой нагрузки учитывается вес балки, перекрытий и опор. Рекомендуется также учесть вес мебели, приборов, отделки, людей и других тяжелых вещей, который также будут оказывать воздействие на конструкцию. Для расчета потребуются такие данные:

  • вес одного метра балки;
  • вес м2 перекрытия;
  • расстояние, которое оставляется между балками;

Чтобы упросить расчет данного примера, можно принять массу перекрытия за 60 кг/м², нагрузку на каждое перекрытие за 250 кг/м², нагрузки на перегородки 75 кг/м², а вес метра балки равным 18 кг. При расстоянии между балками в 60 см, коэффициент k будет равен 0,6.

Если подставить все эти значения в формулу, то получится:

q = (60 + 250 + 75) * 0,6 + 18 = 249 кг/м.

Для расчета изгибающего момента следует воспользоваться формулой f = (5 / 384) * [(qn * L4) / (E * J)] £ [¦].

Подставив в нее данные, получается f = (5 / 384) * [(qn * L4) / (E * J)] = (5 / 384) * [(249 * 44) / (100 000 * 10)] = 0,13020833 * [(249 * 256) / (100 000 * 10)] = 0,13020833 * (6 3744 / 10 000 000) = 0,13020833 * 0,0000063744 = 0,00083 м = 0,83 см.

Именно это и является показателем прогиба при воздействии на балку максимальной нагрузки. Данные расчеты показывают, что при действии на нее максимальной нагрузки, она прогнется на 0,83 см. Если данный показатель меньше 1, то ее использование при указанных нагрузках допускается.

Использование таких вычислений является универсальным способом вычисления жесткости конструкции и величины их прогибания. Самостоятельно вычислить данные величины достаточно легко. Достаточно знать необходимые формулы, а также высчитать величины. Некоторые данные необходимо взять в таблице. При проведении вычислений крайне важно уделять внимание единицам измерения. Если в формуле величина стоит в метрах, то ее нужно перевести в такой вид. Такие простые ошибки могут сделать расчеты бесполезными. Для вычисления жесткости и максимального прогиба балки достаточно знать основные характеристики и размеры материала. Эти данные следует подставить в несколько простых формул.