» » Фермы из профильной трубы. Как производится расчёт фермы для навеса? Расчетная схема фермы

Фермы из профильной трубы. Как производится расчёт фермы для навеса? Расчетная схема фермы

Изучение данных вопросов необходимо в дальнейшем для изучения динамики движении тел с учетом трения скольжения и трения качения, динамики движения центра масс механической системы, кинетических моментов, для решения задач в дисциплине «Сопротивление материалов ».

Расчет ферм. Понятие о ферме. Аналитический расчет плоских ферм.

Фермой называется жесткая конструкция из прямолинейных стержней, соединенных на концах шарнирами . Если все стержни фермы лежат в одной плоскости, ферма называется плоской. Места соединения стержней фермы называют узлами. Все внешние нагрузки к ферме прикладываются только в узлах. При расчете фермы трением в узлах и весом стержней (по сравнению с внешними нагрузками) пренебрегают или распределяют веса стержней по узлам.

Тогда на каждый из стержней фермы будут действовать две силы, приложен-ные к его концам, которые при равновесии могут быть направлены только вдоль стержня. Следовательно, можно считать, что стержни фермы работают только на растяжение или на сжатие. Огра-ничимся рассмотрением жестких плоских ферм, без лишних стержней, образованных из треугольников. В таких фермах число стержней k и число узлов n связаны соотношением

Расчет фермы сводится к определению опорных реакций и уси-лий в ее стержнях.

Опорные реакции можно найти обычными методами статики, рассматривая ферму в целом как твердое тело. Перейдем к определе-нию усилий в стержнях.

Метод вырезания узлов. Этим методом удобно пользоваться, когда надо найти усилия во всех стержнях фермы. Он сводится к по-следовательному рассмотрению условий равновесия сил, сходящихся в каждом из узлов фермы. Ход расчетов поясним на конкретном примере.

Рис.23

Рассмотрим изображенную на рис. 23,а ферму, образованную из одинаковых равнобедренных прямоугольных треугольников; действую-щие на ферму силы парал-лельны оси х и равны: F 1 = F 2 = F 3 = F = 2.

В этой ферме число узлов n = 6, а число стержней k = 9. Следовательно, соот-ношение выполняется и ферма является жесткой, без лишних стержней.

Составляя уравнения рав-новесия для фермы в целом, найдем, что реакции опор направлены, как пока-зано на рисунке, и численно равны;

Y A = N = 3/2F = 3H

Переходим к определению усилий в стержнях.

Пронумеруем узлы фермы римскими цифрами, а стержни — арабскими. Искомые усилия будем обозначать S 1 (в стержне 1), S 2 (в стержне 2) и т. д. Отрежем мысленно все узлы вместе со сходящимися в них стержнями от осталь-ной фермы. Действие отброшенных частей стержней заменим силами, которые будут направлены вдоль соответствующих стержней и численно равны искомым усилиям S 1 , S 2.


Изображаем сразу все эти силы на рисунке, направляя их от узлов, т. е. считая, все стержни растя-нутыми (рис. 23, а; изображенную картину надо представлять себе для каждого узла так, как это показано на рис. 23, б для узла III). Если в результате расчета величина усилия в каком-нибудь стержне получится отрицательной, это будет означать, что данный стержень не растянут, а сжат. Буквенных обозначений для сил, действующих вдоль стержней, ни рис. 23 не вводам, поскольку ясно, что силы, действующие вдоль стержня 1, равны численно S 1 , вдоль стержня 2 — равны S 2 и т. д.

Теперь для сил, сходящихся в каждом узле, составляем последо-вательно уравнения равновесия:

Начинаем с узла 1, где сходятся два стержня, так как из двух уравнений равновесия можно определить только два неизвестных усилия.

Составляя уравнения равновесия для узла 1, получим

F 1 + S 2 cos45 0 = 0, N + S 1 + S 2 sin45 0 = 0.

Отсюда находим:

Теперь, зная S 1 , переходим к узлу II. Для него уравнения равнове-сия дают:

S 3 + F 2 = 0, S 4 - S 1 = 0,

S 3 = -F = -2H, S 4 = S 1 = -1H.

Определив S 4 , составляем аналогичным путем уравнения равновесия сначала для узла III, а затем для узла IV. Из этих уравнений находим:

Наконец, для вычисления S 9 составляем уравнение равновесия сил, сходящихся в узле V, проектируя их на ось By. Получим Y A + S 9 cos45 0 = 0 откуда

Второе уравнение равновесия для узла V и два уравнения для узла VI можно составить как поверочные. Для нахождения усилий в стержнях эти уравнения не понадобились, так как вместо них были использованы три уравнения равновесия всей фермы в целом при определении N, Х А, и Y А.

Окончательные результаты расчета можно свести в таблицу:

Как показывают знаки усилий, стержень 5 растянут, остальные стер-жни сжаты; стержень 7 не нагружен (нулевой, стержень).

Наличие в ферме нулевых стержней, подобных стержню 7, обна-руживается сразу, так как если в узле, не нагруженном внешними силами, сходятся три стержня, из которых два направлены вдоль одной прямой, то усилие в третьем стержне равно нулю. Этот результат получается из уравнения равновесия в проекции на ось, перпендикулярную к упомянутым двум стержням.

Если в ходе расчета встретится узел, для которого число неизве-стных больше двух, то можно воспользоваться методом сечений.

Метод сечений (метод Риттера). Этим методом удобно поль-зоваться для определения усилий в отдельных стержнях фермы, в ча-стности, для проверочных расчетов. Идея метода состоит в том, что ферму разделяют на две части сечением, проходящим через три стержня, в которых (или в одном из которых) требуется определить усилие, и рассматривают равновесие одной из этих частей. Действие отброшенной части заменяют соответствующими силами, направляя их вдоль разрезанных стержней от узлов, т. е. считая стержни рас-тянутыми (как и в методе вырезания узлов). Затем составляют урав-нения равновесия, беря центры моментов (или ось проекций) так, чтобы в каждое уравнение вошло только одно неизвестное усилие.

Графический расчет плоских ферм.

Расчет фермы мето-дом вырезания узлов может производиться графически. Для этого сначала, определяют опорные реакции. Затем, последовательно отсекая от фермы каждый из ее узлов, нахо-дят усилия в стержнях, сходящихся в этих узлах, строя соответствую-щие замкнутые силовые многоугольники. Все построения проводятся в масштабе, который должен быть заранее выбран. Рас-чет начинают с узла, в котором сходятся два стержня (иначе не удастся определить неизвест-ные усилия).

Рис.24

В качестве примера рас-смотрим ферму, изображен-ную на рис. 24, а. В этой ферме число узлов n = 6, а число стержней k = 9. Следовательно, соотношение выполняется и ферма является жесткой, без лиш-них стержней. Опорные реак-ции и для рассматри-ваемой фермы, изображаем на-ряду с силами и , как известные.

Определение усилий в стержнях начинаем с рас-смотрения стержней, сходя-щихся в узле I (узлы нуме-руем римскими цифрами, а стержни - арабскими). Мысленно отрезав от этих стержней остальную часть фермы, отбрасываем ее действие отброшенной части также мысленно заменяем силами и , которые должны быть направлены вдоль стержней 1 и 2. Из сходящихся в узле I сил , и строим замкнутый треугольник (рис. 24, б).

Для этого изображаем сначала в выбранном масштабе известную силу , а затем проводим через ее начало и конец прямые, параллельные стерж-ням 1 и 2. Таким путем будут найдены силы и , действующие на стержни 1 и 2. Затем рассматриваем равновесие стержней, сходящихся в узле II. Действие на эти стержни отброшенной части фермы мысленно заменяем силами , , и , направленными вдоль соответствующих стержней; при этом сила нам известна, так как по равенству дей-ствия и противодействия .

Построив из сил, сходящихся в узле II, замкнутый треугольник (начиная с силы ), найдем вели-чины S 3 и S 4 (в данном случае S 4 = 0). Аналогично находятся усилия в остальных стержнях. Соответствующие силовые многоугольники для всех узлов показаны на рис. 24, б. Последний много-угольник (для узла VI) строится для про-верки, так как все входящие в него силы уже найдены.

Из построенных многоугольников, зная масштаб, находим величины всех усилий. Знак усилия в каждом стержне опреде-ляется следующим образом. Мысленно вы-резав узел по сходящимся в нем стержням (например, узел III), прикладываем к обрезам стержней найденные силы (рис. 25); сила, направленная от узла ( на рис. 25), растягивает стержень, а си-ла, направленная к узлу ( и на рис. 25) сжимает его.

Рис.25

Соглас-но принятому условию растягивающим усилиям приписываем знак «+», а сжимающим - знак «-». В рассмотренном примере (pиc. 25) стержни 1, 2, 3, 6, 7, 9 сжаты, а стержни 5, 8 растянуты.

Ферма — это система обычно прямолинейных стержней, которые соединяются между собой узлами. Это геометрически неизменяемая конструкция с шарнирными узлами (рассматриваются как шарнирные в первом приближении, так как жесткость узлов влияет на работу конструкции несущественно).

За счет того, что стержни испытывают только растяжение либо сжатие, материал фермы используется более полно, чем в сплошной балке. Это делает такую систему экономичной по затратам материала, но трудоемки в изготовлении, поэтому при проектировании нужно учитывать, что целесообразность использования ферм растет прямо пропорционально ее пролёту.

Фермы широко используются в промышленно-гражданском строительстве. Их применяют во многих строительных отраслях: покрытие зданий, мосты, опоры под линии электропередач, транспортные эстакады, грузоподъёмные краны и т.д.


Устройство конструкции

Основные элементы ферм — это пояса, из которых состоит контур фермы, а также решетка, состоящая из стоек и раскосов. Эти элементы соединяются в узлах путем примыкания или узловыми фасонками. Расстояние между опорами называется пролётом. Пояса ферм обычно работают на продольные усилия и изгибающие моменты (как и сплошные балки); решетка фермы принимает на себя в основном поперечную силу как и стенка в балке.

По расположению стержней фермы подразделяются на плоские (если все в одной плоскости) и пространственные. Плоские фермы способны воспринимать нагрузку только относительно собственной плоскости. поэтому их необходимо закреплять из своей плоскости с помощью связей или других элементов. Пространственные же фермы создаются, чтобы воспринимать нагрузку в любом направлении, так как создают жесткую пространственную систему.

Классификация по поясам и решеткам

Для разных видов нагрузок применяются различные виды ферм. Их классификаций множество, в зависимости от разных признаков.

Рассмотрим типы по очертанию пояса :

а — сегментные; б — полигональные; в — трапецеидальные; г — с параллельным расположением поясов; д — и — треугольные

Пояса фермы должны соответствовать статической нагрузке и виду нагрузки, которая определяет эпюру изгибающих моментов.

Очертания поясов во многом определяет экономичность фермы. По количеству используемой стали наиболее эффективна сегментная ферма, но она же является самой сложной в изготовлении.

По типу системы решетки фермы бывают :

а — треугольные; б — треугольные с дополнительными стойками; в — раскосные с восходящими раскосами; г — раскосные с нисходящими раскосами; д — шпренгельные; е — крестовые;

ж — перекрестные; з — ромбические; и — полураскосные

Особенности расчета и проектирования трубчатых ферм

Для производства использует сталь, толщиной 1,5 — 5 мм. Профиль может быть круглый или квадратный.

Трубчатый профиль для сжатых стержней наиболее эффективен с точки зрения расхода стали за счет благоприятного распределения материала относительно центра тяжести. При одинаковой площади сечения он имеет наибольший радиус инерции по сравнению с другими видами проката. Это позволяет проектировать стержни наименьшей гибкости и уменьшить расход стали на 20%. Также существенным преимуществом труб считается их обтекаемость. Благодаря этому давление ветра на такие фермы меньше. Трубы легко чистить и красить. все это делает трубчатый профиль выгодным для использования в фермах.

При проектировании ферм нужно стараться центрировать элементы в узлах по осям. Это делается, чтобы избежать дополнительных напряжений. Узловые сопряжения ферм из труб должны обеспечивать герметичное соединение (необходимо предотвратить возникновение коррозии во внутренней полости фермы).

Наиболее рациональными для трубчатых ферм являются бесфасоночные узлы с примыканием стержней решетки прямо к поясам. Выполняются такие узлы с помощью специальной фигурной резки концов, что позволяет минимализировать затрату труда и материала. Центрируют стержни по геометрическим осям. При отсутствии механизма для такой резки сплющивают концы решетки.

Такие узлы допустимы не для всех видов стали (только низкоуглеродистая или другая с высокой пластичностью). Если трубы решетки и поясов одинакового диаметра, то целесообразно соединять их на кольце.

Расчет стропильных ферм в зависимости от угла наклона крыши

Возведение при угле наклона крыши 22-30 градусов

Угол наклона крыши считается оптимальным для двускатной крыши 20-45 градусов, для односкатной 20-30 градусов.

Конструкция покрытий зданий состоит обычно из поставленных рядом стропильных ферм. Если они связаны между собой только прогонами, то система образуется изменяемая и может потерять устойчивость.

Чтобы обеспечить неизменяемость конструкции, проектировщики предусматривают несколько пространственных блоков из соседних ферм, которые скрепляются связями в плоскостях поясов и вертикальными поперечными связями. К таким жестким блокам крепятся другие фермы с помощью горизонтальных элементов, что и обеспечивает устойчивость конструкции.

Для расчета покрытия здания необходимо определиться с углом наклона кровли. Этот параметр зависит от нескольких факторов:

  • вид стропильной системы
  • кровельный пирог
  • обрешетка
  • материал кровли

Если угол наклона значительный, то использую фермы треугольного типа. Но они имеют некоторые недостатки. Это сложный опорный узел для которого необходимо шарнирное сопряжение, что делает всю конструкцию менее жесткой в поперечном направлении.

Сбор нагрузок

Обычно нагрузка, действующая на конструкцию, прикладывается в местах узлов, к которым крепятся элементы поперечных конструкций (например, навесной потолок или прогоны кровли). Для каждого вида нагрузки желательно определять усилия в стержнях отдельно. Виды нагрузок для стропильных ферм:

  • постоянная (собственная масса конструкции и всей поддерживаемой системы);
  • временная (нагрузка от подвесного оборудования, полезная нагрузка);
  • кратковременная (атмосферная, включающая снег и ветер);

Для определения постоянной расчетной нагрузки следует сначала найти грузовую площать, с которой она будет собираться.

Формула для определения нагрузки на кровлю:

F = (g + g1/cos a)*b ,

где g — собственная масса фермы и ее связей, горизонтальной проекции, g1 — масса кровли, а — угол наклона верхнего пояса относительно горизонта, b — расстояние между фермами

Исходя из этой формулы, чем больше угол наклона, тем меньше нагрузка, действующая на кровлю. Однако, следует учитывать, что увеличение угла влечет за собой и значительное повышение цены за счет увеличения объёма строительных материалов.

Также при проектировании крыши учитывается регион строительства . Если предполагается значительная ветровая нагрузка, то угол наклона закладывают минимальный и крышу делают односкатной.

Снег — нагрузка временная и загружает ферму только частично. Загружение половины фермы может быть очень невыгодным для средних расковов.

Полная снеговая нагрузка на кровлю рассчитывается по формуле :

Sр – расчетное значение снегового веса на 1 м2 горизонтальной поверхности;

μ – расчетный коэффициент, для учета наклона кровли (согласно СНиПу, равняется единице, если угол наклона меньше 25 градусов и 0.7, если угол от 25 до 60 градусов)

Давление ветра считается значимым только для вертикальных поверхностей и поверхностей, если их угол наклона к горизонту больше 30 градусов (актуально для мачт, башен и крутых стропильных ферм). Ветровая нагрузка как и остальные сводится к узловой.

Определение усилий

При проектирование трубчатых стропильных ферм следует учитывать их повышенную жесткость на изгиб и значительное влияние жесткости соединений в узлах. Поэтому для трубчатых профилей расчет ферм по шарнирной схеме допускается при отношении высоты сечения к длине не более 1/10 для конструкции, которые будут эксплуатироваться при расчетной температуре ниже -40 градусов.

В других случаях необходим расчет на изгибающие моменты в стержнях, возникающие из-за жесткости узлов. При этом можно осевые усилия вычислять по шарнирной схеме, а дополнительные моменты находить приближенно.

Инструкция для расчета стропильной фермы

  • определяется расчетная нагрузка (с использованием СНиП «Нагрузки и воздействия»)
  • находятся усилия в стержнях фермы (следует определиться с расчетной схемой)
  • вычисляется расчетная длина стержня (равняется произведению коэффициента приведения длины (0,8) на расстояние между центрами узлов)
  • проверка сжатых стержней на гибкость
  • задавшись гибкостью стержней, подобрать сечение по площади

При предварительном подборе для поясов значение гибкости принимается от 60 до 80, для решетки 100-120.

Подводим итоги

При грамотном проектировании стропильной системы можно значительно сократить количество используемого материала и сделать строительство кровли значительно дешевле. Для правильного расчета необходимо знать регион строительства, определиться с типом профиля, исходя из назначения и вида объекта. Применив правильную методику для нахождения расчетных данных, можно достигнуть оптимального соотношения между ценой возведения конструкции и ее эксплуатационными характеристиками.

Применив профильную трубу для монтажа ферм, можно создавать конструкции, рассчитанные на высокие нагрузки. Легкие металлоконструкции подходят для возведения сооружений, обустройства каркасов под дымоходы, монтажа опор для кровли и козырьков. Вид и габариты ферм определяют в зависимости от специфики использования, будь то домашнее хозяйство или промышленная сфера. Важно грамотно выполнить расчет фермы из профильной трубы, иначе конструкция может не выдержать эксплуатационные нагрузки.

Навес из арочных ферм

Виды ферм

Металлические фермы из трубопроката отличаются трудоемкостью в монтаже, но они экономичнее и легче конструкций из сплошных балок. Профилированная труба, которую изготавливают из круглой путем горячей или холодной обработки, в поперечном разрезе имеет вид прямоугольника, квадрата, многогранника, овала, полуовала или плоскоовальную форму. Удобнее всего монтировать фермы из квадратных труб.

Ферма – это металлоконструкция, в состав которой входит верхний и нижний пояс, а также решетка между ними. К элементам решетки относятся :

  • стойка – располагается перпендикулярно к оси;
  • раскос (подкос) – устанавливается под наклоном к оси;
  • шпренгель (вспомогательный подкос).

Конструктивные элементы металлической фермы

Фермы в первую очередь предназначены для перекрытия пролетов. За счет ребер жесткости они не деформируются даже при использовании длинных конструкций на сооружениях с большими пролетами.

Изготовление металлических ферм производится на земле или в производственных условиях. Элементы из профильных труб обычно скрепляются между собой при помощи сварочного аппарата или клепок, могут использоваться косынки, парные материалы. Чтобы смонтировать каркас навеса, козырька, крыши капитальной постройки, готовые фермы поднимают и крепят к верхней обвязке согласно разметке.

Для перекрытия пролетов применяются различные варианты ферм из металла. Конструкция может быть :

  • односкатной;
  • двухскатной;
  • прямой;
  • арочной.

Треугольные фермы, изготовленные из профильной трубы, используются как стропила, в том числе для монтажа простого односкатного навеса. Металлоконструкции в виде арок пользуются популярностью благодаря эстетичности внешнего вида. Но арочные конструкции требуют максимально точных расчетов, поскольку нагрузка на профиль должна распределяться равномерно.


Треугольная ферма для односкатной конструкции

Особенности конструкций

Выбор конструкции ферм навесов из профильной трубы, козырьков, стропильных систем под кровлей зависит от расчетных эксплуатационных нагрузок. По количеству поясов различаются :

  • опоры, составные части которой формируют одну плоскость;
  • подвесные конструкции, в состав которых входит верхний и нижний пояс.

В строительстве можно использовать фермы с различным контуром :

  • с параллельным поясом (самый простой и экономичный вариант, собирается из идентичных элементов);
  • односкатные треугольные (каждый опорный узел характеризуется повышенной жесткостью, за счет чего конструкция выдерживает серьезные внешние нагрузки, материалоемкость ферм небольшая);
  • полигональные (выдерживают нагрузки от тяжелого настила, но сложны в монтаже);
  • трапецеидальные (схожи по характеристикам с полигональными фермами, но этот вариант более простой по конструкции);
  • двухскатные треугольные (применяются для устройства крыши с крутыми скатами, характеризуются большой материалоемкостью, при монтаже много отходов);
  • сегментные (подходят для сооружений со светопрозрачной кровлей из поликарбоната, монтаж усложнен из-за необходимости изготавливать дугообразные элементы с идеальной геометрией для равномерного распределения нагрузок).

Очертания поясов ферм

В соответствии с величиной угла наклона типовые фермы подразделяют на следующие виды :


Основы расчета

Перед тем как рассчитать ферму, необходимо подобрать подходящую конфигурацию крыши, учитывая габариты сооружения, оптимальное количество и угол наклона скатов. Также следует определить, какой контур поясов подойдет для выбранного варианта крыши – при этом принимаются во внимание все эксплуатационные нагрузки на кровлю, включая осадки, ветровую нагрузку, вес людей, производящих работы по обустройству и обслуживанию навеса из профильной трубы или кровли, монтажу и ремонту оборудования на крыше.

Чтобы выполнить расчет фермы из профильной трубы, необходимо определить длину и высоту металлоконструкции. Длина соответствует расстоянию, которое должна перекрывать конструкция, при этом высота зависит от запроектированного угла наклона ската и выбранного контура металлоконструкции.

Расчет навеса в итоге сводится к тому, чтобы определить оптимальные промежутки между узлами фермы. Для этого требуется рассчитать нагрузку на металлоконструкцию, выполнить расчет профильной трубы.

Неправильно рассчитанные каркасы кровли несут угрозу для жизни и здоровья людей, поскольку тонкие или недостаточно жесткие металлоконструкции могут не выдержать нагрузок и разрушиться. Поэтому рекомендуется доверить расчет металлической фермы профессионалам, знакомым со специализированными программами .

Если принято решение выполнить вычисления самостоятельно, необходимо воспользоваться справочными данными, в том числе о сопротивлении трубы на изгиб, руководствоваться СНиП. Правильно рассчитать конструкцию без соответствующих знаний сложно, поэтому рекомендуется найти пример расчета типовой фермы нужной конфигурации и подставить в формулу необходимые значения .

На этапе проектирования составляется чертеж фермы из профильной трубы. Подготовленные чертежи с указанием размеров всех элементов упростят и ускорят изготовление металлоконструкций.


Чертеж с размерами элементов

Рассчитываем ферму из стальной профильной трубы

  1. Определяется размер пролета постройки, который требуется перекрыть, выбирается форма крыши и оптимальный угол наклона ската (или скатов).
  2. Подбираются подходящие контуры поясов металлоконструкции с учетом назначения постройки, формы и размеров крыши, угла наклона, предполагаемых нагрузок.
  3. Рассчитав приблизительные габариты фермы, следует определить, можно ли изготовить металлоконструкции в заводских условиях и доставить их на объект автотранспортом, или сварка ферм из профильной трубы будет выполнена непосредственно на стройплощадке по причине большой длины и высоты конструкций.
  4. Далее требуется рассчитать габариты панелей, основываясь на показателях нагрузок при эксплуатации кровли – постоянных и периодических.
  5. Чтобы определить оптимальную высоту конструкции в середине пролета (Н), используют следующие формулы, где L – длина фермы:
    • для параллельных, полигональных и трапецеидальных поясов: Н=1/8×L, при этом уклон верхнего пояса доложен составлять приблизительно 1/8×L или 1/12×L;
    • для металлоконструкций треугольной формы: Н=1/4×L либо Н=1/5×L.
  6. Угол установки раскосов решетки составляет от 35° до 50°, рекомендуемое значение 45°.
  7. На следующем этапе следует определить расстояние между узлами (обычно оно соответствует ширине панели). Если длина пролета превышает 36 метров, требуется вычисление строительного подъема – обратно погашаемого изгиба, который воздействует на металлоконструкцию при нагрузках.
  8. На основании измерений и вычислений готовится схема, согласно которой будет вестись изготовление ферм из профильной трубы.

Изготовление конструкции из профильной трубы
Чтобы обеспечить необходимую точность расчетов, используйте строительный калькулятор – подходящую специальную программу. Так вы сможете сопоставить свои и программные расчеты для того, чтобы не допустить большого несоответствия в размерах!

Арочные конструкции: пример расчета

Чтобы сварить ферму для навеса в виде арки, применяя профильную трубу, необходимо правильно рассчитать конструкцию. Рассмотрим принципы расчета на примере предполагаемого сооружения с пролетом между опорными конструкциями (L) 6 метров, шагом между арками 1,05 метра, высотой фермы 1,5 метра – такая арочная ферма выглядит эстетично и способна выдержать высокие нагрузки. Длина стрелы нижнего уровня арочной фермы при этом составляет 1,3 метра (f), а радиус окружности в нижнем поясе будет равен 4,1 метра (r). Величина угла между радиусами: а=105.9776°.


Схема с размерами арочного навеса

Для нижнего пояса длину профиля (mн) рассчитывают по формуле:

mн = π×R×α/180 , где:

mн – длина профиля из нижнего пояса;

π – постоянная величина (3,14);

R – радиус окружности;

α – угол между радиусами.

В результате получаем:

mн = 3,14×4,1×106/180 = 7,58 м

Узлы конструкции располагают в участках нижнего пояса с шагом 55,1 см - допускается округлить значение до 55 см, чтобы упростить сборку конструкции, но увеличивать параметр не следует. Расстояния между крайними участками требуется рассчитать индивидуально.

Если длина пролета составляет менее 6 метров, вместо сварки сложных металлоконструкций можно воспользоваться одинарной или двойной балкой, выполнив сгиб металлического элемента под выбранным радиусом. В этом случае расчет арочных ферм не требуется, но важно правильно подобрать сечение материала, чтобы конструкция выдерживала нагрузки.

Профильная труба для монтажа ферм: требования к расчету

Чтобы готовые конструкции перекрытий, в первую очередь крупногабаритные, выдерживали проверку на прочность на протяжении всего срока эксплуатации, трубопрокат для изготовления ферм подбирается на основании:

  • СНиП 07-85 (взаимодействие снеговой нагрузки и веса элементов конструкций);
  • СНиП П-23-81 (о принципах работы со стальными профилированными трубами);
  • ГОСТ 30245 (соответствие сечения профильных труб и толщины стенок).

Данные из указанных источников позволят ознакомиться с видами профильных труб и выбрать оптимальный вариант с учетом конфигурации сечения и толщины стенок элементов, конструктивных особенностей фермы.


Навес для авто из трубопроката

Фермы рекомендуется изготавливать из трубопроката высокого качества, для арочных конструкций желательно выбрать легированную сталь. Чтобы металлоконструкции были устойчивы к коррозии, сплав должен включать большой процент углерода. Металлоконструкции из легированной стали не нуждаются в дополнительной защитной окраске.

Зная, как сделать решетчатую ферму, можно смонтировать надежный каркас под светопрозрачный навес или кровлю. При этом важно учитывать ряд нюансов.

  • Самые прочные конструкции монтируются из металлопрофиля с сечением в виде квадрата или прямоугольника за счет наличия двух ребер жесткости.
  • Основные компоненты металлоконструкции крепятся между собой с использованием спаренных уголков и прихваток.
  • При стыковке деталей каркаса в верхнем поясе требуется использовать двутавровые разносторонние уголки, при этом соединять следует по меньшей стороне.
  • Сопряжение частей нижнего пояса крепят с установкой равносторонних уголков.
  • Стыкуя основные части металлоконструкций большой длины, применяют накладные пластины.

Важно представлять, как сварить ферму из профильной трубы, если металлоконструкцию требуется собрать непосредственно на строительной площадке. Если нет навыков ведения сварочных работ, рекомендуется пригласить сварщика с профессиональным оборудованием.


Сварка элементов фермы

Стойки металлоконструкции монтируют под прямым углом, раскосы – под наклоном в 45°. На первом этапе нарезаем из профильной трубы элементы в соответствии с размерами, указанными на чертеже. Собираем на земле основную конструкцию, проверяем ее геометрию. Затем варим собранный каркас, используя уголки и накладные пластины, где они требуются.

Обязательно проверяем прочность каждого сварного шва . От их качества и точности расположения элементов зависит прочность и надежность сваренных металлоконструкции, их несущая способность. Готовые фермы поднимают наверх и крепят к обвязке, соблюдая шаг установки согласно проекту.

Имеется открытая площадка размерами 10х5 м возле дома и эту площадку хочется сделать закрытой, чтобы летом можно было пить чай на улице, не взирая на погодные условия, точнее взирая, но из-под надежного навеса, а еще чтобы можно было поставить машину под навес, сэкономив на гараже, да и вообще чтобы была защита от солнечного зноя в летний день. Вот только 10 метров - пролет большой и балку для такого пролета подобрать трудно, да и слишком массивной будет эта самая балка - скучно и вообще напоминает заводской цех. В таких случаях оптимальный вариант - сделать вместо балок фермы, а потом уже по фермам кидать обрешетку и делать кровлю. Само собой форма фермы может быть любой, но далее будет рассматриваться расчет треугольной фермы, как наиболее простой вариант. Проблемы расчета колонн для подобного навеса рассматриваются отдельно, расчет двух или ригелей, на которые будут опирать фермы, здесь также не приводится.

Пока предполагается, что фермы будут располагаться с шагом 1 метр, а нагрузка на ферму от обрешетки будет передаваться только в узлах фермы. Кровельным материалом будет служить профнастил. Высота фермы может быть теоретически любой, вот только если это навес, примыкающий к основному зданию, то главным ограничителем будет форма кровли, если здание одноэтажное, или окна второго этажа, если этажей больше, но в любом случае сделать высоту фермы больше 1 м вряд ли получится, а с учетом того, что надо делать еще и ригеля между колоннами, то и 0.8 м не всегда выйдет (тем не менее примем эту цифру для расчетов). На основании этих предположений уже можно конструировать ферму:

Рисунок 272.1. Общая предварительная схема навеса по фермам.

На рисунке 272.1 голубым цветом показаны балки обрешетки, синим цветом - ферма, которую следует рассчитать, фиолетовым цветом - балки или фермы, на которые опираются колонны, изменение цвета от светло-голубого к темно-фиолетовому в данном случае показывает увеличение расчетной нагрузки, а значит для для более темных конструкций потребуются более мощные профили. Фермы на рисунке 272.1 показаны темно-зеленым цветом из-за совершенно иного характера нагрузки. Таким образом расчет всех элементов конструкции по отдельности, как то:

Балок обрешетки (балки обрешетки можно рассматривать как многопролетные балки , если длина балок будет около 5 м, если балки будут делаться длиной около 1 м, т.е. между фермами, тогда это обычные однопролетные балки на шарнирных опорах)

Ферм кровли (достаточно определить нормальные напряжения в поперечных сечениях стержней, о чем речь ниже)

Балок или ферм под фермами кровли (рассчитываются как однопролетные балки или фермы)

никаких особых проблем не представляет. Однако целью данной статьи является показать пример расчета именно треугольной фермы, этим мы и займемся. На рисунке 272.1 можно рассмотреть 6 треугольных ферм, при этом на крайние (переднюю и заднюю) фермы нагрузка будет в 2 раза меньше, чем на остальные фермы. Это означает, что эти две фермы если есть стойкое желание сэкономить на материалах, следует рассчитывать отдельно. Однако из эстетических и технологических соображений лучше все фермы сделать одинаковыми, а это значит, что достаточно рассчитать все лишь одну ферму (показана на рис.272.1 синим цветом). В данном случае ферма будет консольной, т.е. опоры фермы будут располагаться не на концах фермы, а в узлах, показанных на рисунке 272.2. Такая расчетная схема позволяет более равномерно распределить нагрузки, а значит, и использовать для изготовления ферм профили меньшего сечения. Для изготовления ферм планируется использовать квадратные профильные трубы одного типа, а подобрать требуемое сечение профильной трубы поможет дальнейший расчет.

Если балки обрешетки будут опираться сверху на узлы ферм, то нагрузку от навеса из профнастила и снега лежащего на этом профнастиле, можно считать сосредоточенной, приложенной в узлах фермы. Стержни фермы будут свариваться между собой, при этом стержни верхнего пояса скорее всего будут неразрезными длиной примерно 5.06 м. Однако будем считать, что все узлы фермы - шарнирные. Эти уточнения могут показаться незначительной мелочью, однако позволяют максимально ускорить и упростить расчет , по причинам, изложенным в другой статье. Единственное, что нам осталось определить для дальнейших расчетов, сосредоточенную нагрузку, но и это сделать не сложно, если профнастил или балки обрешетки уже рассчитаны. При расчете профнастила мы выяснили, что листы профнастила длиной 5.1-5.3 м представляют собой многопролетную неразрезную балку с консолью. Это означает, что опорные реакции для такой балки и соответственно нагрузки для нашей фермы будут не одинаковыми, однако изменения опорных реакций для 5 пролетной балки будут не такими уж и значительными и для упрощения расчетов можно считать, что нагрузка от снега, профнастила и обрешетки будет передаваться равномерно, как в случае с однопролетными балками. Такое допущение приведет только к небольшому запасу по прочности. В итоге мы получаем следующую расчетную схему для нашей фермы:

Рисунок 272.2 . Расчетная схема для треугольной фермы.

На рисунке 272.2 а) представлена общая расчетная схема нашей фермы, расчетная нагрузка составляет Q = 190 кг , что вытекает из расчетной снеговой нагрузки 180 кг/м 2 , веса профнастила и возможного веса балки обрешетки. На рисунке 272.2 б) показаны сечения, благодаря которым можно рассчитать усилия во всех стержнях фермы с учетом того что ферма и нагрузка на ферму является симметричной и значит достаточно рассчитывать не все стержни фермы, а чуть больше половины. А чтобы не запутаться во многочисленных стержнях при расчете, стержни и узлы ферм принято маркировать. Маркировка, показанная на рис.272.2 в) означает, что у фермы есть:

Стержни нижнего пояса: 1-а, 1-в, 1-д, 1-ж, 1-и;

Стержни верхнего пояса: 2-а, 3-б, 4-г, 5-е, 6-з;

Раскосы: а-б, б-в, в-г, г-д, д-е, е-ж, ж-з, з-и.

Если будет рассчитываться каждый стержень фермы, то желательно составить таблицу, в которую следует внести все стержни. Затем в эту таблицу будет удобно вносить полученное значение сжимающих или растягивающих напряжений.

Ну а сам расчет никаких особенных сложностей не представляет, если ферма будет свариваться из 1-2 видов профилей замкнутого сечения. Например, весь расчет фермы можно свести к тому, чтобы рассчитать усилия в стержнях 1-и, 6-з и з-и. Для этого достаточно рассмотреть продольные силы, возникающие при отсечении части фермы по линии IX-IX (рис. 272.2 г).

Но оставим сладкое на третье, и посмотрим как это делается на более простых примерах, для этого рассмотрим

сечение I-I (рис. 272.2.1 д)

Если указанным образом отсечь лишнюю часть фермы, то нужно определить усилия только в двух стержнях фермы. Для этого используются уравнения статического равновесия. Так как в узлах фермы шарниры, то и значение изгибающих моментов в узлах фермы равно нулю, а кроме того, исходя из тех же условий статического равновесия сумма всех сил относительно оси х или оси у также равна нулю. Это позволяет составить как минимум три уравнения статического равновесия (два уравнения для сил и одно для моментов), но в принципе уравнений моментов может быть столько же сколько узлов в ферме и даже больше, если использовать точки Риттера. А это такие точки в которых пересекаются две из рассматриваемых сил и при сложной геометрии фермы точки Риттера не всегда совпадают с узлами фермы. Тем не менее в данном случае у нас геометрия достаточно простая (до сложной геометрии мы еще успеем добраться) и потому для определения усилий в стержнях достаточно имеющихся узлов фермы. Но при этом опять же из соображений простоты расчета обычно выбираются такие точки, уравнение моментов относительно которой позволяет сразу определить неизвестное усилие, не доводя дело до решения системы из 3 уравнений.

Выглядит это примерно так. Если составить уравнение моментов относительно точки 3 (рис. 272.2.2 д), то в нем будут всего два члена, причем один из них уже известный:

М 3 = -Ql /2 + N 2-a h = 0 ;

N 2-a h = Ql/2 ;

где l - расстояние от точки 3 до точки приложения силы Q/2, которое в данном случае и является плечом действия силы, согласно принятой нами расчетной схемы l = 1.5 м ; h- плечо действия силы N 2-a (плечо показано на рис. 272.2.2 д) синим цветом).

При этом третий возможный член уравнения равен нулю, так как сила N 1-а (на рис. 272.2.2 д) показана серым цветом) направлена по оси, проходящей через точку 3 и значит плечо действия равно нулю. Единственное, что в этом уравнении нам неизвестно - это плечо действия силы N 2-а, впрочем определить его, владея соответствующими знаниями по геометрии, легко.

Наша ферма имеет расчетную высоту 0.8 м и общую расчетную длину 10 м. Тогда тангенс угла α составит tgα = 0.8/5 = 0.16, соответственно значение угла α = arctgα = 9.09 о. И тогда

h = l sin α

Теперь нам ничего не мешает определить значение силы N 2-a :

N 2-a = Ql /(2lsin α) = 190/(2·0.158) = 601.32 кг

Подобным же образом определяется значение N 1-а . Для этого составляется уравнение моментов относительно точки 2:

М 2 = -Ql /2 + N 1-a h = 0;

N 1-a h = Ql /2

N 1-a = Q/(2 tg α) = 190/(2·0.16) = 593.77 кг

Проверить правильность вычислений мы можем, составив уравнения сил:

ΣQ y = Q/2 - N 2-a sin α = 0; Q/2 = 95= 601.32·0.158 = 95 кг

ΣQ x = N 2-a cos α - N 1-a = 0; N 1-a = 593.77 = 601.32·0.987 = 593.77 кг

Условия статического равновесия выполняются и любое из уравнений сил, использованных для проверки, можно было использовать для определения усилий в стержнях. Вот, собственно и все, дальнейший расчет фермы - чистейшая механика, но на всякий случай рассмотрим еще

сечение II-II (рис. 272.2. e)

На первый взгляд кажется, что более простым будет уравнение моментов относительно точки 1 для определения силы N а-б , однако в этом случае потребуется для определения плеча силы сначала найти значение угла β. А вот если рассматривать равновесие системы относительно точки 3, то:

М 3 = -Ql /2 - Ql /3 + N 3-б h = 0 ;

N 3-б h = 5Ql /6 ;

N 3-б = 5Q/(6sin α) = 5·190/(6·0.158) = 1002.2 кг (работает на растяжение)

Ну а теперь все же определим значение угла β. Исходя из того, что известны все стороны некоего прямоугольного треугольника (нижний катет или длина треугольника - 1 м, боковой катет или высота треугольника - 0.16 м, гипотенуза - 1.012 м и даже угол α), то соседний прямоугольный треугольник с высотой 0.16 м и длиной 0.5 м будет иметь tgβ = 0.32 и соответственно угол между длиной и гипотенузой β = 17.744 о, полученный из арктангенса. И теперь проще составить уравнение сил относительно оси х :

ΣQ x = N 3-б cos α + N а-б cos β- N 1-а = 0;

N a-б = (N 1-а - N 3-б cos α)/cos β = (593.77 - 1002.2·0.987)/ 0.952 = - 415.61 кг

В данном случае знак "-" показывает, что сила направлена в сторону, противоположную от той, которую мы приняли при составлении расчетной схемы. И тут пришло время поговорить о направлении сил, точнее, о том значении, которое в это направление вкладывается. Когда мы заменяем внутренние усилия в рассматриваемом поперечном сечении стержней фермы, то под силой направленной от поперечного сечения подразумеваются растягивающие напряжения, если сила направлена к поперечному сечению, то подразумеваются сжимающие напряжения. С точки зрения статического равновесия не важно какое направление силы принимать при расчетах, если сила будет направлена в противоположную сторону, то значит у этой силы будет знак минус. Однако при расчете важно знать, на какое именно усилие рассчитывается данный стержень. Для растягиваемых стержней принцип определения необходимого сечения простейший:

При расчете стержней, работающих на сжатие, следует учитывать множество различных факторов и в общем виде формулу для расчета сжатых стержней можно выразить так:

σ = N/φF ≤ R

Примечание : расчетную схему можно составлять так, чтобы все продольные силы были направлены от поперечных сечений. В этом случае знак "-" перед значением силы, полученный при расчетах, будет показывать, что данный стержень работает на сжатие.

Так результаты предыдущего расчета показывают, что в стержнях 2-а и 3-б возникают растягивающие напряжения, в стержнях 1-а и а-б - сжимающие усилия. Ну а теперь вернемся к цели нашего расчета - определению максимальных нормальных напряжений в стержнях. Как и в обычной симметричной балке, у которой максимальные напряжения при симметричной нагрузке возникают в сечении, наиболее удаленном от опор, в ферме максимальные напряжения возникают в стержнях наиболее удаленных от опор, т.е. в стержнях, отсекаемых сечением IX-IX.

сечение IX-IX (рис. 272.2. г)

М 9 = -4.5Q/2 - 3.5Q - 2.5Q - 1.5Q -0.5Q + 3V A - 4.5N 6-з sin α = 0 ;

N 6-з = (15Q - 10.25Q)/(4.5sin α) = 4.75·190/(4.5·0.158) = 1269.34 кг (работает на сжатие)

где V A = 5Q , определяются опорные реакции ферм все по тем же уравнениям равновесия системы, так как ферма и нагрузки симметричные, то

V A = ΣQ y /2 = 5Q ;

так как горизонтальных нагрузок у нас пока не предусмотрено, то горизонтальная опорная реакция на опоре А будет равна нулю, поэтому H A показано на рисунке 272.2 б) светло фиолетовым цветом.

плечи у всех сил в данном случае разные, а потому сразу подставлены числовые значения плеч в формулу.

Чтобы определить усилие в стержне з-и, нужно сначала определить значение угла γ (на рисунке не показан). Исходя из того, что известны две стороны некоего прямоугольного треугольника (нижний катет или длина треугольника - 0.5 м, боковой катет или высота треугольника - 0.8 м, то tgγ = 0.8/0.5 = 1.6 и значение угла γ = arctgγ = 57.99 о. И тогда для точки 3

h = 3sin γ = 2.544 м. Тогда:

М 3 = - 1.5Q/2 - 0.5Q + 0.5Q + 1.5Q + 2.5Q - 1.5N 6-з sin α + 2.544N з-и = 0 ;

N з-и = (1.25Q - 4.5Q + 1.5N 6-з sin α) /2.544 = (332.5 - 617.5)/2.544 = -112 кг

И теперь проще составить уравнение сил относительно оси х :

ΣQ x = - N 6-з cos α - N з-и cos γ + N 1-и = 0;

N 1-и = N 6-з cos α + N з-и cos γ = 1269.34·0.987 - 112·0.53 = 1193.46 кг (работает на растяжение)

Так как верхний и нижний пояса фермы будут из одного типа профиля, то тратить время и силы на расчет стержней нижнего пояса 1-в, 1-д и 1-ж, равно как и стержней верхнего пояса 4-г и 5-е нет необходимости. Усилия в этих стержнях будут явно меньше уже определенных нами. Если бы ферма была бесконсольной, т.е. опоры располагались на концах фермы, то усилия в раскосах также были бы меньше уже определенных нами, однако у нас ферма с консолями и потому воспользуемся еще несколькими сечениями, чтобы определить усилия в раскосах по приведенному выше алгоритму (подробности расчета не приводятся):

N б-в = -1527.34 кг - работает на сжатие (сечение III-III, рис.272.2 ж), определялось по уравнению моментов относительно точки 1)

N в-г = 634.43 кг - работает на растяжение (сечение IV-IV, рис.272.2 з), определялось по уравнению моментов относительно точки 1)

N г-д = - 493.84 кг - работает на сжатие (сечение V-V, определялось по уравнению моментов относительно точки 1)

Таким образом самыми загруженными у нас являются два стержня N 6-з = 1269.34 кг и N б-в = - 1527.34 кг. Оба стержня работают на сжатие и если вся ферма будет изготавливаться из одного типа профиля, то достаточно рассчитать один из этих стержней по предельным напряжениям и на основе этих расчетов подобрать необходимое сечение профиля. Однако тут все не так просто, на первый взгляд кажется, что достаточно рассчитать стержень N б-в, но при расчете сжатых элементов большое значение имеет расчетная длина стержня. Так длина стержня N 6-з составляет 101.2 см, в то время как длина стержня N б-в составляет 59.3 см. Поэтому, чтобы не гадать, лучше рассчитать оба стержня.

стержень N б-з

Расчет сжатых стержней ничем не отличается от расчета центрально сжатых колонн , поэтому далее приводятся только основные этапы расчета без подробных пояснений.

по таблице 1 (см. ссылку выше) определяем значение μ = 1 (не смотря на то, что верхний пояс фермы будет из цельного профиля, расчетная схема фермы подразумевает шарнирное закрепление стержней в узлах фермы, поэтому более правильным будет принять вышеуказанное значение коэффициента).

Принимаем предварительно значение λ = 90, тогда по таблице 2 коэффициент изгиба φ = 0.625 (для стали С235 прочностью R y = 2350 кгс/см 2 , определяется интерполяцией значений 2050 и 2450)

Тогда требуемый радиус инерции составит:

Расчёт металлоконструкций стал камнем преткновения для многих строителей. На примере простейших ферм для уличного навеса мы расскажем, как правильно рассчитать нагрузки, а также поделимся простыми способами самостоятельной сборки без использования дорогостоящего оборудования.

Общая методология расчёта

Фермы применяют там, где использовать цельную несущую балку нецелесообразно. Эти конструкции отличаются меньшей пространственной плотностью, при этом сохраняют устойчивость воспринимать воздействия без деформаций благодаря правильному расположению деталей.

Конструкционно ферма состоит из внешнего пояса и заполняющих элементов. Суть работы такой решётки довольно проста: поскольку каждый горизонтальный (условно) элемент не может выдержать полную нагрузку ввиду недостаточно большого сечения, два элемента располагаются на оси главного воздействия (силы тяжести) таким образом, чтобы расстояние между ними обеспечивало достаточно большое сечение поперечного среза всей конструкции. Ещё проще можно объяснить так: с точки зрения восприятия нагрузок ферму рассматривают так, будто она выполнена из цельного материала, при этом заполнение обеспечивает достаточную прочность, исходя лишь из расчётного приложенного веса.

Конструкция фермы из профильной трубы: 1 — нижний пояс; 2 — раскосы; 3 — стойки; 4 — боковой пояс; 5 — верхний пояс

Такой подход крайне прост и зачастую его с лихвой хватает для сооружения простых металлоконструкций, однако материалоёмкость при грубом расчёте получается крайне высокой. Более подробное рассмотрение действующих воздействий помогает снизить расход металла в 2 и более раз, такой подход и будет наиболее полезным для нашей задачи — сконструировать лёгкую и достаточно жёсткую ферму, а потом собрать её.

Основные профили ферм для навеса: 1 — трапециевидный; 2 — с параллельными поясами; 3 — треугольный; 4 — арочный

Начать следует с определения общей конфигурации фермы. Обычно она имеет треугольный или трапециевидный профиль. Нижний элемент пояса располагают преимущественно горизонтально, верхний — под наклоном, обеспечивающим правильный уклон кровельной системы . Сечение и прочность элементов пояса при этом следует выбирать близкими к таким, чтобы конструкция могла поддерживать свой собственный вес при имеющейся системе опоры. Далее производится добавление вертикальных перемычек и косых связей в произвольном количестве. Конструкцию нужно отобразить на эскизе для визуализации механики взаимодействия, указав реальные размеры всех элементов. Далее в дело вступает её величество Физика.

Определение сочетанных воздействий и реакции опоры

Из раздела статики школьного курса механики мы возьмём два ключевых уравнения: равновесия сил и моментов. Их мы будем применять, чтобы вычислить реакцию опор, на которые положена балка. Для простоты вычислений опоры будем считать шарнирными, то есть не имеющими жёстких связей (заделки) в точке касания с балкой.

Пример металлической фермы: 1 — ферма; 2 — балки обрешётки; 3 — кровельное покрытие

На эскизе нужно предварительно отметить шаг обрешётки системы кровли, ведь именно в этих местах должны находиться точки сосредоточения приложенной нагрузки. Обычно именно в точках приложения нагрузки и размещаются узлы схождения раскосов, так проще выполнить расчёт нагрузки. Зная общий вес кровли и число ферм в навесе, нетрудно вычислить нагрузку на одну ферму, а фактор равномерности покрытия определит, равны ли будут приложенные силы в точках сосредоточения, или же они будут отличаться. Последнее, к слову, возможно, если в определённой части навеса один материал покрытия сменяется другим, имеется проходной трап или, например, зона с неравномерно распределённой снеговой нагрузкой. Также воздействие на разные точки фермы будет неравномерным, если её верхняя балка имеет скругление, в этом случае точки приложения силы нужно соединить отрезками и рассматривать дугу как ломанную линию.

Когда все действующие усилия проставлены на эскизе фермы, приступаем к вычислению реакции опоры. Относительно каждой из них ферму можно представить не иначе как рычаг с соответствующей суммой воздействий на него. Чтобы вычислить момент силы в точке опоры, нужно умножить нагрузку на каждую точку в килограммах на длину плеча приложения этой нагрузки в метрах. Первое уравнение гласит, что сумма воздействий в каждой точке и равняется реакции опоры:

  • 200 · 1,5 + 200 · 3 + 200 · 4,5 + 100 · 6 = R 2 · 6 — уравнение равновесия моментов относительно узла а , где 6 м — длина плеча)
  • R 2 = (200 · 1,5 + 200 · 3 + 200 · 4,5 + 100 · 6) / 6 = 400 кг

Второе уравнение определяет равновесность: сумма реакций двух опор будет в точности равна приложенному весу, то есть зная реакцию одной опоры, можно легко найти значение для другой:

  • R 1 + R 2 = 100 + 200 + 200 + 200 + 100
  • R1 = 800 - 400 = 400 кг

Но не ошибитесь: здесь также действует правило рычага, поэтому если ферма имеет существенный вынос за одну из опор, то и нагрузка в этом месте будет выше пропорционально разнице расстояний от центра масс до опор.

Дифференциальный расчёт усилий

Переходим от общего к частному: теперь необходимо установить количественное значение усилий, действующих на каждый элемент фермы. Для этого перечисляем каждый отрезок пояса и заполняющие вставки списком, затем каждый из них рассматриваем как сбалансированную плоскую систему.

Для удобства вычислений каждый соединительный узел фермы можно представить в виде векторной диаграммы, где векторы воздействий пролегают по продольным осям элементов. Всё, что нужно для вычислений — знать длину сходящихся в узле отрезков и углы между ними.

Начинать нужно с того узла, для которого в ходе вычисления реакции опоры было установлено максимально возможное число известных величин. Начнём с крайнего вертикального элемента: уравнение равновесия для него гласит, что сумма векторов сходящихся нагрузок равна нулю, соответственно, противодействие силе тяжести, действующей по вертикальной оси, эквивалентно реакции опоры, равной по величине, но противоположной по знаку. Отметим, что полученное значение — лишь часть общей реакции опоры, действующая для данного узла, остальная нагрузка придётся на горизонтальные части пояса.

Узел b

  • -100 + S 1 = 0
  • S 1 = 100 кг

Далее перейдём к крайнему нижнему угловому узлу, в котором сходятся вертикальный и горизонтальный сегменты пояса, а также наклонный раскос. Сила, действующая на вертикальный отрезок, вычислена в предыдущем пункте — это давящий вес и реакция опоры. Сила, действующая на наклонный элемент, вычисляется по проекции оси этого элемента на вертикальную ось: из реакции опоры вычитаем действие силы тяжести, затем «чистый» результат делим на sin угла, под которым раскос наклонён к горизонтали. Нагрузка на горизонтальный элемент находится также путём проекции, но уже на горизонтальную ось. Только что полученную нагрузку на наклонный элемент мы умножаем на cos угла наклона раскоса и получаем значение воздействия на крайний горизонтальный сегмент пояса.

Узел a

  • -100 + 400 - sin(33,69) · S 3 = 0 — уравнение равновесия на ось у
  • S 3 = 300 / sin(33,69) = 540,83 кг — стержень 3 сжат
  • -S 3 · cos(33,69) + S 4 = 0 — уравнение равновесия на ось х
  • S 4 = 540,83 · cos(33,69) = 450 кг — стержень 4 растянут

Таким образом, последовательно переходя от узла к узлу, необходимо вычислить действующие в каждом из них силы. Обратите внимание, что встречно направленные векторы воздействий сжимают стержень и наоборот — растягивают его, если направлены противоположно друг от друга.

Определение сечения элементов

Когда для фермы известны все действующие нагрузки, пора определяться с сечением элементов. Оно не обязательно должно быть равным для всех деталей: пояс традиционно выполняют из проката более крупного сечения, чем детали заполнения. Так обеспечивается запас надёжности конструкции.

где: F тр — площадь поперечного сечения растянутой детали; N — усилие от расчётных нагрузок; R y γ с

Если с разрывающими нагрузками для стальных деталей всё относительно просто, то расчёт сжатых стержней производится не на прочность, а на устойчивость, так как итоговый результат количественно меньше и, соответственно, считается критическим значением. Рассчитать можно на онлайн-калькуляторе, а можно и вручную, предварительно определив коэффициент приведения длины, определяющий, на какой части общей протяжённости стержень способен изгибаться. Этот коэффициент зависит от метода крепления краёв стержня: для торцевой сварки это единица, а при наличии «идеально» жёстких косынок может приближаться к 0,5.

где: F тр — площадь поперечного сечения сжатой детали; N — усилие от расчётных нагрузок; φ — коэффициент продольного изгиба сжатых элементов (определяется по таблице); R y — расчётное сопротивление материала; γ с — коэффициент условий работы.

Также нужно знать минимальный радиус инерции, определяемый как квадратный корень из частного от деления осевого момента инерции на площадь сечения. Осевой момент определяется формой и симметрией сечения, лучше взять это значение из таблицы.

где: i x — радиус инерции сечения; J x — осевой момент инерции; F тр — площадь сечения.

Таким образом, если разделить длину (с учётом коэффициента приведения) на минимальный радиус инерции, можно получить количественное значение гибкости. Для устойчивого стержня соблюдается условие, что частное от деления нагрузки на площадь поперечного сечения не должно быть меньше произведения допустимой сжимающей нагрузки на коэффициент продольного изгиба, который определяется значением гибкости конкретного стержня и материалом его изготовления.

где: l x — расчётная длина в плоскости фермы; i x — минимальный радиус инерции сечения по оси x; l y — расчётная длина из плоскости фермы; i y — минимальный радиус инерции сечения по оси y.

Обратите внимание, что именно в расчёте сжатого стержня на устойчивость отображена вся суть работы фермы. При недостаточном сечении элемента, не позволяющем обеспечить его устойчивость, мы вправе добавить более тонкие связи, изменив систему крепления. Это усложняет конфигурацию фермы, но позволяет добиться большей устойчивости при меньшем весе.

Изготовление деталей для фермы

Точность сборки фермы крайне важна, ведь все расчёты мы проводили методом векторных диаграмм, а вектор, как известно, может быть только абсолютно прямым. Поэтому малейшие напряжения, возникающие вследствие искривлений из-за неправильной подгонки элементов, сделают ферму крайне неустойчивой.

Сначала нужно определиться с размерами деталей внешнего пояса. Если с нижней балкой всё достаточно просто, то для нахождения длины верхней можно воспользоваться либо теоремой Пифагора, либо тригонометрическим соотношением сторон и углов. Последнее предпочтительно при работе с такими материалами, как угловая сталь и профильная труба. Если угол ската фермы известен, его можно вносить как поправку при подрезке краёв деталей. Прямые углы пояса соединяются подрезкой под 45°, наклонные — путём добавления к 45° угла наклона с одной стороны стыка и вычитанием его же с другой.

Детали заполнения вырезают по аналогии с элементами пояса. Основная загвоздка в том, что ферма — изделие строго унифицированное, а потому для её изготовления потребуется точная деталировка. Как и при расчёте воздействий, каждый элемент нужно рассматривать индивидуально, определяя углы схождения и, соответственно, углы подреза краёв.

Довольно часто фермы изготавливают радиусными. Такие конструкции имеют более сложную методику расчёта, но большую конструкционную прочность, обусловленную более равномерным восприятием нагрузок. Изготавливать скругленными элементы заполнения смысла нет, а вот для деталей пояса это вполне применимо. Обычно арочные фермы состоят из нескольких сегментов, которые соединяются в местах схождения заполняющих раскосов, что нужно учитывать при проектировании.

Сборка на метизах или сваривание?

В заключение было бы неплохо обозначить практическую разницу между способами сборки фермы свариванием и с помощью разъёмных соединений. Начать следует с того, что сверление в теле элемента отверстий под болты или заклёпки практически не влияет на его гибкость, а потому на практике не учитывается.

Когда речь зашла о способе скрепления элементов фермы, мы установили, что при наличии косынок длина участка стержня, способного изгибаться, существенно сокращается, за счёт чего можно уменьшить его сечение. В этом преимущество сборки фермы на косынках, которые крепятся сбоку к элементам фермы. В таком случае особой разницы в методе сборки нет: длины сварочных швов будет с гарантией достаточно, чтобы выдержать сосредоточенные напряжения в узлах.

Если же сборка фермы производится стыкованием элементов без косынок, здесь нужны особые навыки. Прочность всей фермы определяется наименее прочным её узлом, а потому брак в сваривании хотя бы одного из элементов может привести к разрушению всей конструкции. При недостаточном навыке ведения сварочных работ рекомендуется провести сборку на болтах или заклёпках с использованием хомутов, угловых кронштейнов или накладных пластин. При этом крепление каждого элемента к узлу должно осуществляться не менее чем в двух точках.