» » Схемы электронных блоков люминесцентных ламп. Как сделать блок питания из энергосберегающих ламп

Схемы электронных блоков люминесцентных ламп. Как сделать блок питания из энергосберегающих ламп

Энергосберегающие лампы действительно потребляют значительно меньше электроэнергии, чем аналоги с нитью накала, но стоят они в несколько раз дороже последних. И, как показывает практика, выходят из строя чаще. Вдвойне обидней, когда это происходит через два-три месяца после приобретения. В таких случаях не стоит их выбрасывать в мусорное ведро по двум причинам. Во-первых, в этих осветительных приборах содержится ртуть, поэтому они требуют утилизации. Во-вторых, с большой долей вероятности лампу можно восстановить. Расскажем, как это можно сделать.

Особенности конструкции

Прежде, чем приступать к ремонту, необходимо понимать устройство осветительного прибора. Основные элементы конструкции представлены на рисунке 1.

Рис. 1. Устройство энергосберегающей лампы

Обозначения:

  • А – Колба спиралевидной формы. По сути это запаянная трубка, внутри нее находится инертный газ (как правило, аргон) и пары ртути. С каждого ее края вплавлены два электрода, между которыми натянута нить накала. Внутренняя часть трубки покрыта люминофором.
  • В – Верхняя часть корпуса, к которой крепится колба. Сразу предупреждаем, что вытащить колбу не нарушив целостность корпуса нереально, поэтому их лучше воспринимать как единую конструкцию.
  • С – смонтированное на печатной плате пускорегулирующее устройство, его еще называют электронным балластом или просто балластом. Как вы понимаете, при его выходе из строя, осветительный прибор превращается в предмет утилизации. Схема балласта будет приведена в соответствующем разделе.
  • D – Предохранитель, как правило, его роль играет низкоомное сопротивление.
  • E – Нижняя часть корпуса, в него устанавливается балласт, крепление с верхней частью обеспечивается при помощи защелок.
  • F – цоколь. В быту более распространены типы Е14 (миньон) и Е27. Нижняя часть корпуса с цоколем, также представляют собой единую, неразборную конструкцию. На внешней части корпуса нанесена маркировка осветительного прибора, где указаны его основные характеристики.

Основные этапы ремонта

Системный подход к любой задаче обеспечивает оптимальный способ ее решения, поэтому будем действовать по следующему алгоритму:

  1. Подготовка необходимых инструментов.
  2. Демонтаж конструкции.
  3. Поиск и устранение неисправностей.
  4. Сборка конструкции.

Теперь подробно о каждом этапе.

Необходимые инструменты

В процессе работы нам понадобятся:

  • плоская отвертка;
  • цифровой мультиметр;
  • паяльник мощностью 25-30 Вт и все необходимое для пайки.

Демонтаж

Все действия делаем аккуратно, стараясь не повредить корпус, а тем более колбу лампы, в которой находятся пары ртути, представляющие опасность для человеческого организма.

Как уже было сказано выше, верхняя и нижняя части корпуса соединены между собой защелками. Чтобы их разъединить, необходимо вставить отвертку в щель (показано на рис 2) и слегка повернуть ее. Рекомендуем начинать с места, где нанесена маркировка, как правило, там находится одна из защелок.


Рис. 2. Паз между верхней и нижней частью корпуса

Теперь нам необходимо отсоединить провода, соединяющие нить накала лампы и плату. Всего их четыре штуки. В большинстве конструкций провода не припаяны на плату, а намотаны на специальные штырьки.


После этого этапа можно переходит к поиску неисправностей.

Поиск неисправностей

Осветительный прибор может не работать из-за неисправности колбы (перегорела одна или обе нити накала) или вследствие выхода из строя пускорегулирующего устройства. Начнем проверку с колбы.

Для этой цели нам понадобится мультиметр. Переводим его в режим измерения низкоомного сопротивления и прозваниваем каждую пару выводов. Как правило, их сопротивление не превышает 15 Ом. Может иметь место незначительное расхождение в показаниях по каждой паре, но, это, скорее всего погрешность прибора.

Проведя измерения можно сформировать первоначальные выводы:

  • Если обнаружен обрыв нити накала, то пускорегулирующее устройство с большой вероятностью работоспособное. Колба подлежит утилизации, а электронный балласт можно отложить до лучших времен, например, если потребуется произвести его замену на однотипном приборе освещения. Заметим, что при одной перегоревшей нити накала, лампу можно восстановить. Как это сделать будет рассказано в разделе, посвященном пускорегулирующему устройству.
  • В том случае, когда с колбой все в порядке, моно констатировать выход из строя балласта. Как и большинство электронных устройств, он подлежит ремонту.

Ремонт балласта

В первую очередь необходимо произвести визуальный осмотр. В большинстве случаев с его помощью можно определить сгоревшие компоненты, например вздутые емкости, разрушенные корпуса транзисторов, следы подгорания и т.д. Заметим, что замена таких элементов может не дать результата, в этом случае потребуется проверка всей цепи.

Если проблемы не обнаружены, необходимо проверить основные элементы. Для этого желательно иметь схему пускорегулирующего устройства.

Схема балласта

Приведенная схема является типовой, она используется практически во всех балластах с небольшими изменениями.


Рисунок 5. Схема электронного балласта

Обозначения:

  • Сопротивления: R1 – от 1 до 30 Ом (играет роль предохранителя); R2 и R3– от 220 кОм до 510 кОм; R4 и R5– от 1 до 2,7 Ом; R6 и R7– от 8,2 до 20 Ом.
  • Емкости: С1 – 0,1 мкФ; С2 – от 1,5 мкФ до 10 мкФ 400В; С3 – 0,01 мкФ; С4 – от 0,033 мФ до 0,1 мкФ 400В; С5 – от 1800 пФ до 3900 пФ 650В.
  • Диоды: VD1-VD5 – 1N4005; VD6 и VD7 – 1N4148.
  • Динистор VS1 – DB3 (в осветительных приборах малой мощности может не использоваться).
  • Транзисторы: VT1, VT2 – 13003 (вполне возможны другие аналоги).

Катушка L1 совместно с емкостью С1 играет роль фильтра помех, во многих недорогих китайских приборах вместо нее запаяна перемычка.

Катушка L2 может иметь от 250 до 350 витков, которые намотаны проводом Ø 0,2 мм на ферритовый сердечник, имеющий Ш-образную форму. По внешнему виду напоминает небольшой трансформатор.

Трансформатор Т1 в каждой обмотке от 3 до 9 витков, как правило, используется провод Ø 0,3 мм. В качестве магнитопровода используется ферритовое кольцо.

Предохранитель: FU1 – 0.5 A. В большинстве изделий, произведенных в Китае он не устанавливается. В таких случаях роль предохранителя выполняет низкоомное сопротивление R1. Именно оно сгорает в первую очередь. Как правило, замена не дает результата, поскольку его выход из строя является следствием неисправности, а не причиной.

Поиск неисправностей в балласте

Алгоритм действий будет следующим:


  • После замены начинаем поиск неисправных компонентов. В приведенной схеме чаще всего из строя выходят емкости, именно с них необходимо начинать проверку. Для этого вооружаемся паяльником и выпаиваем конденсаторы С3-С5 (см. схему на рис. 5). После этого проверяем их при помощи мультиметра (как проверить различные электронные компоненты можно узнать на нашем сайте).

Обратим внимание, что в тех случаях, когда осветительный прибор вышел из строя, но наблюдется небольшое свечение колбы в области нитей накала, можно с уверенностью сказать – необходима замена емкости С5. Как видно из схемы, она является частью колебательного контура, необходимого для формирования высоковольтного импульса, чтобы вызвать разряд. При сгоревшей емкости, напряжения для разряда недостаточно, в результате лампа не может перейти в фазу рабочего режима, но на спирали подается питание. Это и проявляется в виде небольшого свечения.


Соответственно, если при внешнем осмотре обнаружилось вздутие C2, велика вероятность выхода из строя одного или нескольких диодов моста.

  • Если перечисленные деталями исправны, то следует проверить транзисторы. Их придется проблема выпаивать, поскольку обвязка не даст точно провести измерения. Как показывает практика, в ходе вышеописанных этапов тестирования неисправность будет обнаружена.
  • Обнаружив неисправность, необходимо протестировать работу осветительного прибора, подав питание на цоколь. Делать это нужно аккуратно, поскольку на элементах платы присутствует высокое напряжение.

После того, как лампа зажглась, отключаем ее и приступаем к сборке. С ней проблем, как правило, не бывает.

Ремонт лампы с перегоревшей нитью накала

Необходимо сразу предупредить, что такой ремонт приведет к тому, что балласт будет работать в нештатном режиме. В результате перегрузки пускорегулирующее устройство выйдет из строя. Как правило, оно работает в таком режиме не более года, продолжительность зависит от задействованных в схеме элементов и их состояния.

Если сгорела только одна нить накала, ее необходимо зашунтировать сопротивлением, так как это продемонстрировано на рисунке.


В качестве шунтирующего сопротивления R Ш теоретически необходимо устанавливать резистор с номиналом, соответствующим сопротивлению второй (целой) нити накала. Но, как показывает практика, это не совсем верно, потому, что мы измеряем сопротивление «холодной» нити. В результате такого ремонта устройство выйдет из строя в течение 10-15 минут «спалив» при этом большую часть активных компонентов. Поэтому мы советуем использовать резистор номиналом 22 Ома мощностью не менее 1 Ватта.

Современные производители предлагают энергоэффективные лампы разных размеров, мощностей, оснащенных различными цоколями. Также осветительные приборы имеют разное строение, от чего отличаются их схемы. В зависимости от компании-производителя, можно выбрать изделия с более сложными механизмами, которые будут иметь качественные элементы электронного пускорегулирующего аппарата (ЭПРА).

Особенности схем

На рынке есть недорогие модели, однако в них часто не хватает важных компонентов, влияющих на срок эксплуатации изделий. Самыми популярными в России являются такие изготовители:

  • Navigator (отечественный производитель);
  • MAXUS (международная британско-английская корпорация);
  • DeLux (китайский производитель);
  • Camelion (зонтичный бренд, зарожденный в Гонконге и удачно интегрированный в наши дни в Европе, Азии и Америке).

Схема энергосберегающей лампы – это ее, так называемое, сердце, при помощи которого функционирует весь осветительный прибор. В состав электронной платы могут входить детали различного качества и величины, в зависимости от добросовестности производителя. Стоит отметить, что приборы высокой мощности, эквивалентные лампам накаливания на 105 и выше ватт, не могут иметь мелких элементов, так как для обеспечения нормальной работы электросхема должна быть оснащена массивными деталями.

Если сравнивать лампочки «Максус» и «Навигатор», можно убедиться, что их комплектующие будут разными. Это значит, что компании сотрудничают с различными производителями электродеталей или используют разные подходы к самостоятельному созданию этих элементов.

В целом же, все схемы ламп на 20, 30, 60 W и выше будут очень похожими между собой, что помогает производить их ремонт, если какие-то механизмы выходят из строя.

Принцип действия экономки

Энергосберегающая лампа работает практически по такому же принципу, как и линейные люминесцентные лампы. Ее свечение обеспечивается прохождением напряжения через электроды, распложенные по краям стеклянной колбы. Трубка наполнена инертным газом и парами ртути или ее соединениями. Когда среда внутри лампы разогревается, образуются ионизованные электроны, которые с большой скоростью сталкиваются с атомами газа. Все это приводит к образованию низкотемпературной плазмы, выделяющей ультрафиолетовое излучение.

Однако человек не может воспринимать ни ультрафиолетовое, ни инфракрасное излучение. Для его преобразования в видимый для наших глаз свет используется специальное покрытие – люминофор. Проходя через него, лучи ультрафиолета превращаются в равномерное, яркое, насыщенное освещение.

Благодаря невысокой мощности, экономка на 20 Вт имеет больший КПД, чем лампа накаливания на 100 Вт. Рассмотрим, из-за чего лампочки помогают сберегать электроэнергию, и как они устроены.

Составляющие схемы

Энергосберегающий осветительный прибор состоит из самой лампы и электронного балласта, который еще называют электросхемой. Все элементы электроники созданы для того, чтобы обеспечивать бесперебойную и корректную работу лампы. Самая большая отличительная особенность данных устройств от обычных ламп накаливания заключается в том, что они работают от постоянного напряжения, а не переменного, который выдает сеть. Именно по этой причине ЭПРА вмонтирован в сам корпус лампочек, он используется для предобразования, распределения и защиты механизма. Схема включения содержит такие компоненты:

  • высоковольтные маломощные диоды;
  • помехозащитный дроссель;
  • транзисторы средней мощности;
  • электролит высоковольтный (чаще всего на 400 В);
  • конденсаторы различной емкости, но одного вольтажа (250 В);
  • высокочастотные трансформаторы (2 штуки);
  • резисторы.

Как происходит зажигание лампы

Когда напряжение попадает на динистор, образовывается импульс, который идет на транзистор и провоцирует его открытие. После того как запуск завершен, эта часть цепи блокируется диодом. После открытия транзистора конденсатор разряжается, что необходимо для предупреждения повторного открытия динистора. Транзисторы воздействуют на трансформатор. Он выполнен из ферритового колечка, обработанного тремя обмотками, расположенными в несколько рядов. Напряжение на нити дается через конденсатор с повышающего резонансного контура.

Свечение в трубке начинается на резонансной частоте, которую определяет конденсатор большей емкости. В момент зажигания его напряжение составляет до 600 Вт. При запуске оно превышает среднее в 5 раз, потому важно, чтобы колба была целой и герметичной. В противном случае возможно повреждение транзисторов.

После полной ионизации газа в колбе конденсатор с самой большей емкостью, который определял частоту свечения, шунтируется. Это приводит к понижению частоты и переходу управления генератором ко второму конденсатору. Генерируемое напряжение снижается, но остается в пределах такого, которое необходимо для поддержания горения лампочки.

Принципиальный момент заключается в том, что катод и анод поочередно меняются своими местами, это помогает обеспечить бесперебойность работы схемы и значительно упрощает ремонт, если его нужно сделать.

Устройство лампы

Кроме ЭПРА, вмонтированного в цоколь, важным элементом энергосберегающего осветительного прибора является лампа. Именно она отвечает за равномерность распределения света, его насыщенность, цветопередачу и другие свойства устройства. Условно разделить отделы колбы можно на нижний и верхний. В верхнем проделываются специальные отверстия, предназначенные для установки трубки. Нижняя часть содержит плату, в которой расположены детали, и от которой отходят выводы от трубки.

Верхняя область платы оснащена проводами, которые идут к цоколю. Крепиться друг к другу элементы лампы могут при помощи специальных защелок. В более дешевых моделях части склеивают. Если нужно сделать ремонт, по линии стыка надо провести отверткой или разъединить защелки.

Как производится ремонт

Для того чтобы определить, какие элементы схемы или самой лампы неисправны, ее нужно разобрать. Для этого отсоединяем верхнюю часть от нижней и отключаем колбу. При помощи Омметра производим проверку спиралей накала колбы. Если обнаружится, что перегорела одна спираль, ремонт колбы производится. Ее можно замкнуть резистором на 8-10 Ом. Резистор должен иметь большую мощность. Также нужно будет убрать диод, который шунтирует перегоревшую спираль, если он есть в схеме.

Если в лампах на 30 Вт и более перегорает резистор, большая вероятность того, что транзисторы также вышли из строя. Это происходит из-за пробоя конденсатора. Исправить ситуацию можно путем установки нового предохранителя (резистора) и транзисторов.

Кроме замены испорченных элементов схемы, можно произвести модернизацию лампы. Это делается путем просверливания в цоколе вентиляционных отверстий. В некоторых моделях они уже есть, а если производители не позаботились о надлежащем охлаждении элементов электроники, можно сделать это самостоятельно.

Внимание! Если вы просверлили в цоколе лампы на 30 W или осветительном приборе другой мощности вентиляционные отверстия, его нельзя использовать в помещениях с повышенной влажностью. Это может привести к пробою в конденсаторе и выходу лампы из строя.

Целесообразность вмешательства в схемы

Производить ремонт ламп на 30 W или другой мощности можно только в том случае, если вы уверенны в своих силах и знаниях. Когда же вы не понимаете, как устроена схема лампы, и что в ней может сломаться, лучше всего не пытайтесь самостоятельно устранить поломку.

Запрещено производить какие-либо действия с экономками, если нарушена целостность их колб. В трубке содержится ртуть или ее пары, потому при ее разгерметизации прибор становится опасным для здоровья и жизни человека.

Подытожим

Схемы практически одинаковы во всех моделях. Различия могут быть в наличии диодов, шунтирующих спиралей и других элементов. Однако если вы знаете устройство электроники одного прибора, то работать со всеми остальными будет довольно просто.

Схемами интересуются зачастую люди, которые хотят самостоятельно починить вышедшие из строя осветительные приборы. Делать это несложно, если вы имеете необходимые навыки и уверены, что экономку можно привести в рабочее состояние.

Пока учёные укрощают скорость света, я вот решил укротить ненужные люминесцентные лампы, переделывая их в светодиодные. Компактные люминесцентные лампы (КЛЛ) по немного уходят в прошлое, по понятным всем причинам: меньшая эффективность относительно светодиодных, экологическая небезопасность (ртуть), ультрафиолетовое излучение опасное для глаз человека, да и недолговечность.

Как и у многих радиолюбителей, накопилась целая коробка этого «добра». Менее мощные можно использовать как запчасти, ну а те что по мощнее, начиная с 20W можно переделать и источники питания. Ведь электронный балласт, это дешевый преобразователь напряжения, то есть простой и доступный импульсный блок питания которым можно питать приборы мощностью до 30-40W (зависит от КЛЛ), и даже больше если менять выходной дроссель и транзисторы. Тем радиолюбителям которые проживают в отдалённых местах, или в определённых ситуациях, эти «энергосберегалки» окажутся полезными. Так что, не спешите их выбрасывать после выхода из строя - а работают они не долго!

В моём случае, примерно год назад (весной 2014г.), начав экспериментировать с электронным балластом, в поисках корпуса под переделку в светодиодную лампу, возвращаясь вечером домой с работы, меня осенило - увидев на тротуаре банку из под колы. Ведь алюминиевый корпус из под 0,25L напитка, как раз подходит в качестве радиатора для рассеивания тепла светодиодной ленты. А также, идеально садится под корпус КЛЛ «Vitoone» с цоколем Е27, на 25 W. Да и в эстетике неплох!

Изготовив несколько переделанных LED-ламп, я начал их испытывать в разных условиях эксплуатации. Одна из них работает в подсобном помещении в жаре и морозе (с вентиляционными отверстиями), другая в жилом помещении (без отверстии в пластмассовом цоколе). Ещё одна подключена к трёхметровой светодиодной ленте. Прошел почти год, и они до сих пор безотказно служат! Ну, и учитывая то, что на тему светодиодов, статьей появляется все больше и больше, пришлось наконец-то написать и о моей испытанной временем идеи.

Обсудить статью ЛАМПА СВЕТОДИОДНАЯ УНИВЕРСАЛЬНАЯ

В настоящее время всё большее распространение получают так называемые люминесцентные энергосберегающие лампы. В отличие от обычных люминесцентных ламп с электромагнитным балластом, в энергосберегающих лампах с электронным балластом используется специальная схема.

Благодаря этому такие лампы легко установить в патрон взамен обычной лампочки накаливания со стандартным цоколем E27 и E14. Именно о бытовых люминесцентных лампах с электронным балластом далее и пойдёт речь.

Отличительные особенности люминесцентных ламп от обычных ламп накаливания.

Люминесцентные лампы не зря называют энергосберегающими, так как их применение позволяет снизить энергопотребление на 20 – 25 % . Их спектр излучения более соответствует естественному дневному свету. В зависимости от состава применяемого люминофора можно изготавливать лампы с разным оттенком свечения, как более тёплых тонов, так и холодных. Следует отметить, что люминесцентные лампы более долговечны, чем лампы накаливания. Конечно, многое зависит от качества конструкции и технологии изготовления.

Устройство компактной люминесцентной лампы (КЛЛ).

Компактная люминесцентная лампа с электронным балластом (сокращённо КЛЛ) состоит из колбы, электронной платы и цоколя E27 (E14), с помощью которого она устанавливается в стандартном патроне.

Внутри корпуса размещается круглая печатная плата, на которой собран высокочастотный преобразователь. Преобразователь при номинальной нагрузке имеет частоту 40 – 60 кГц . В результате того, что используется довольно высокая частота преобразования, устраняется “моргание”, свойственное люминесцентным лампам с электромагнитным балластом (на основе дросселя), которые работают на частоте электросети 50 Гц. Принципиальная схема КЛЛ показана на рисунке.

По данной принципиальной схеме собираются в основном достаточно дешёвые модели, к примеру, выпускаемые под брендом Navigator и ERA . Если вы используете компактные люминесцентные лампы, то, скорее всего они собраны по приведённой схеме. Разброс указанных на схеме значений параметров резисторов и конденсаторов реально существует. Это связано с тем, что для ламп разной мощности применяются элементы с разными параметрами. В остальном схемотехника таких ламп мало чем отличается.

Разберёмся подробнее в назначении радиоэлементов, показанных на схеме. На транзисторах VT1 и VT2 собран высокочастотный генератор. В качестве транзисторов VT1 и VT2 используются кремниевые высоковольтные n-p-n транзисторы серии MJE13003 в корпусе TO-126. Обычно на корпусе этих транзисторов указываются только цифровой индекс 13003 . Также могут применяться транзисторы MPSA42 в более миниатюрном корпусе формата TO-92 или аналогичные высоковольтные транзисторы.

Миниатюрный симметричный динистор DB3 (VS1 ) служит для автозапуска преобразователя в момент подачи питания. Внешне динистор DB3 выглядит как миниатюрный диод. Схема автозапуска необходима, т.к преобразователь собран по схеме с обратной связью по току и поэтому сам не запускается. В маломощных лампах динистор может отсутствовать вообще.

Диодный мост , выполненный на элементах VD1 – VD4 служит для выпрямления переменного тока. Электролитический конденсатор С2 сглаживает пульсации выпрямленного напряжения. Диодный мост и конденсатор С2 являются простейшим сетевым выпрямителем. С конденсатора C2 постоянное напряжение поступает на преобразователь. Диодный мост может выполняться как на отдельных элементах (4 диодах), либо может применяться диодная сборка.

При своей работе преобразователь генерирует высокочастотные помехи, которые нежелательны. Конденсатор С1 , дроссель (катушка индуктивности) L1 и резистор R1 препятствуют распространению высокочастотных помех по электросети. В некоторых лампах, видимо из экономии:) вместо L1 устанавливают проволочную перемычку. Также, во многих моделях нет предохранителя FU1 , который указан на схеме. В таких случаях, разрывной резистор R1 также играет роль простейшего предохранителя. В случае неисправности электронной схемы потребляемый ток превышает определённое значение, и резистор сгорает, разрывая цепь.

Дроссель L2 обычно собран на Ш -образном ферритовом магнитопроводе и внешне выглядит как миниатюрный броневой трансформатор . На печатной плате этот дроссель занимает довольно внушительное пространство. Обмотка дросселя L2 содержит 200 – 400 витков провода диаметром 0,2 мм. Также на печатной плате можно найти трансформатор, который указан на схеме как T1 . Трансформатор T1 собран на кольцевом магнитопроводе с наружным диаметром около 10 мм. На трансформаторе намотаны 3 обмотки монтажным или обмоточным проводом диаметром 0,3 – 0,4 мм. Число витков каждой обмотки колеблется от 2 – 3 до 6 – 10.

Колба люминесцентной лампы имеет 4 вывода от 2 спиралей. Выводы спиралей подключаются к электронной плате методом холодной скрутки, т.е без пайки и прикручены на жёсткие проволочные штыри, которые впаяны в плату. В лампах малой мощности, имеющих малые габариты, выводы спиралей запаиваются непосредственно в электронную плату.

Ремонт бытовых люминесцентных ламп с электронным балластом.

Производители компактных люминесцентных ламп заявляют, что их ресурс в несколько раз больше, чем обычных ламп накаливания. Но, несмотря на это бытовые люминесцентные лампы с электронным балластом выходят из строя довольно часто.

Связано это с тем, что в них применяются электронные компоненты, не рассчитанные на перегрузки. Также стоит отметить высокий процент бракованных изделий и невысокое качество изготовления. По сравнению с лампами накаливания стоимость люминесцентных довольно высока, поэтому ремонт таких ламп оправдан хотя бы в личных целях. Практика показывает, что причиной выхода из строя служит в основном неисправность электронной части (преобразователя). После несложного ремонта работоспособность КЛЛ полностью восстанавливается и это позволяет сократить денежные расходы.

Перед тем, как начать рассказ о ремонте КЛЛ, затронем тему экологии и безопасности.

Несмотря на свои положительные качества люминесцентные лампы вредны как для окружающей среды, так и для здоровья человека. Дело в том, что в колбе присутствуют пары ртути. Если её разбить, то опасные пары ртути попадут в окружающую среду и, возможно, в организм человека. Ртуть относят к веществам 1-ого класса опасности .

При повреждении колбы необходимо покинуть на 15 – 20 минут помещение и сразу же провести принудительное проветривание комнаты. Необходимо внимательно относиться к эксплуатации любых люминесцентных ламп. Следует помнить, что соединения ртути, применяемые в энергосберегающих лампах опаснее обычной металлической ртути. Ртуть способна оставаться в организме человека и наносить вред здоровью .

Кроме указанного недостатка необходимо отметить, что в спектре излучения люминесцентной лампы присутствует вредное ультрафиолетовое излучение. При длительном нахождении близко с включенной люминесцентной лампой возможно раздражение кожи, так как она чувствительна к ультрафиолету.

Наличие в колбе высокотоксичных соединений ртути является главным мотивом экологов, которые призывают сократить производство люминесцентных ламп и переходить к более безопасным светодиодным.

Разборка люминесцентной лампы с электронным балластом.

Несмотря на простоту разборки компактной люминесцентной лампы, следует быть аккуратным и не допускать разбития колбы. Как уже говорилось, внутри колбы присутствуют пары ртути, опасные для здоровья. К сожалению, прочность стеклянных колб невысока и оставляет желать лучшего.

Для того чтобы вскрыть корпус где размещена электронная схема преобразователя, необходимо острым предметом (узкой отвёрткой) разжать пластмассовую защёлку, которая скрепляет две пластмассовые части корпуса.

Далее следует отсоединить выводы спиралей от основной электронной схемы. Делать это лучше узкими плоскогубцами подхватив конец вывода провода спирали и отмотать витки с проволочных штырей. После этого стеклянную колбу лучше поместить в надёжное место, чтобы не допустить её разбития.

Оставшаяся электронная плата соединена двумя проводниками со второй частью корпуса, на которой смонтирован стандартный цоколь E27 (E14).

Восстановление работоспособности ламп с электронным балластом.

При восстановлении КЛЛ первым делом следует проверить целостность нитей накала (спиралей) внутри стеклянной колбы. Целостность нитей накала просто проверить с помощью обычного омметра . Если сопротивление нитей мало (единицы Ом), то нить исправна. Если же при замере сопротивление бесконечно велико, то нить накала перегорела и применить колбу в данном случае невозможно.

Наиболее уязвимыми компонентами электронного преобразователя, выполненного на основе уже описанной схемы (см. принципиальную схему), являются конденсаторы.

Если люминесцентная лампа не включается, то следует проверить на пробой конденсаторы C3, C4, C5. При перегрузках эти конденсаторы выходят из строя, т.к приложенное напряжение превосходит напряжение, на которое они рассчитаны. Если лампа не включается, но колба светиться в районе электродов, то возможно пробит конденсатор C5.

В таком случае преобразователь исправен, но поскольку конденсатор пробит, то в колбе не возникает разряд. Конденсатор C5 входит в колебательный контур, в котором в момент запуска возникает высоковольтный импульс, приводящий к появлению разряда. Поэтому если конденсатор пробит, то лампа не сможет нормально перейти в рабочий режим, а в районе спиралей будет наблюдаться свечение, вызываемое разогревом спиралей.

Холодный и горячий режим запуска люминесцентных ламп.

Бытовые люминесцентные лампы бывают двух типов:

    С холодным запуском

    С горячим запуском

Если КЛЛ загорается сразу после включения, то в ней реализован холодный запуск. Данный режим плох тем, что в таком режиме катоды лампы предварительно не прогреваются. Это может привести к перегоранию нитей накала вследствие протекания импульса тока.

Для люминесцентных ламп более предпочтителен горячий запуск. При горячем запуске лампа загорается плавно, в течение 1-3 секунд. В течение этих несколько секунд происходит разогрев нитей накала. Известно, что холодная нить накала имеет меньшее сопротивление, чем разогретая. Поэтому, при холодном запуске через нить накала проходит значительный импульс тока, который может со временем вызвать её перегорание.

Для обычных ламп накаливания холодный запуск является стандартным, поэтому многие знают, что они сгорают как раз в момент включения.

Для реализации горячего запуска в лампах с электронным балластом применяется следующая схема. Последовательно с нитями накала включается позистор (PTC - терморезистор) . На принципиальной схеме этот позистор будет подключен параллельно конденсатору С5.

В момент включения в результате резонанса на конденсаторе С5, а, следовательно, и на электродах лампы возникает высокое напряжение, необходимое для её зажжения. Но в таком случае нити накала плохо прогреты. Лампа включается мгновенно. В данном случае параллельно С5 подключен позистор. В момент запуска позистор имеет низкое сопротивление и добротность контура L2C5 значительно меньше.

В результате напряжение резонанса ниже порога зажжения. В течение нескольких секунд позистор разогревается и его сопротивление увеличивается. В это же время разогреваются и нити накала. Добротность контура возрастает и, следовательно, растёт напряжение на электродах. Происходит плавный горячий запуск лампы. В рабочем режиме позистор имеет высокое сопротивление и не влияет на рабочий режим.

Нередки случаи, что выходит из строя как раз этот позистор, и лампа попросту не включается. Поэтому при ремонте ламп с балластом следует обратить на него внимание.

Довольно часто сгорает низкоомный резистор R1, который, как уже говорилось, играет роль предохранителя.

Активные элементы, такие как транзисторы VT1, VT2, диоды выпрямительного моста VD1 –VD4 также стоит проверить. Как правило, причиной их неисправности служит электрический пробой p-n переходов. Динистор VS1 и электролитический конденсатор С2 на практике редко выходят из строя.

Экономные люминесцентные лампы способны работать только с электронными балластами. Предназначены данные устройства для выпрямления тока. Информации про электронный балласт (схема, ремонт и подключение) имеется очень много. Однако в первую очередь важно изучить устройство прибора.

Модели диодного типа

Модели диодного типа на сегодняшний день считаются бюджетными. В данном случае трансформаторы используются лишь понижающего типа. Некоторые производители транзисторы устанавливают открытого типа. За счет этого процесс понижения частоты в цепи происходит не очень резко. Для стабилизации выходного напряжения применяются два конденсатора. Если рассматривать современные модели балластов, то там имеются динисторы операционного типа. Ранее их заменяли обычными преобразователями.

Двухконтактные модели

Данного типа схема электронного балласта для отличается от прочих моделей тем, что в ней используется регулятор. Таким образом, пользователь способен настраивать параметр выходного напряжения. Трансформаторы используются в устройствах самые различные. Если рассматривать распространенные модели, то там установлены понижающие аналоги. Однако однофазовые конфигурации не уступают им по параметрам.

Всего конденсаторов в цепи у моделей предусмотрено два. Также двухконтактные схемы электронных балластов включают в себя дроссель, который устанавливается за выходными каналами. Транзисторы для моделей подходят лишь емкостные. На рынке они представлены как постоянного, так и переменного типа. Предохранители в устройствах используются редко. Однако если в цепи установлен тиристор для выпрямления тока, то без него не обойтись.

Схема балласта "Эпра" 18 Вт

Данная для люминесцентной лампы включает в себя а также две пары конденсаторов. Транзистор для модели предусмотрен лишь один. Отрицательное сопротивление он максимум способен выдерживать на уровне 33 Ом. Для устройств данного типа это считается нормальным. Также схема электронного балласта 18 Вт включает в себя дроссель, который расположен над трансформатором. Динистор для преобразования тока применяется модульного типа. Понижение тактовой частоты происходит при помощи тетрода. Находится данный элемент возле дросселя.

Балласт "Эпра" 2х18 Вт

Указанный электронный балласт 2х18 (схема показана ниже) состоит из выходных триодов, а также понижающего трансформатора. Если говорить про транзистор, то он в данном случае предусмотрен открытого типа. Всего конденсаторов в цепи имеется два. Еще у схемы электронных балластов "Эпра" 18 Вт есть дроссель, который располагается под трансформатором.

Конденсаторы при этом стандартно устанавливаются возле каналов. Процесс преобразования осуществляется через понижение тактовой частоты устройства. Стабильность напряжения в данном случае обеспечивается благодаря качественному динистору. Всего каналов у модели имеется два.

Схема балласта "Эпра" 4х18 Вт

Этот электронный балласт 4х18 (схема показана ниже) включает в себя конденсаторы инвертирующего типа. Емкость их составляет ровно 5 пФ. В данном случае параметр отрицательного сопротивления в электронных балластах доходит до 40 Ом. Также важно упомянуть о том, что дроссель в представленной конфигурации расположен под динистором. Транзистор у этой модели имеется один. Трансформатор для выпрямления тока применяется понижающего типа. Перегрузки он способен от сети выдерживать большие. Однако предохранитель в цепи все-таки установлен.

Балласт Navigator

Электронный балласт Navigator (схема показана ниже) включает в себя однопереходный транзистор. Также отличие этой модели кроется в наличии специального регулятора. С его помощью пользователь сможет настраивать параметр выходного напряжения. Если говорить про трансформатор, то он в цепи предусмотрен понижающего типа. Расположен он возле дросселя и фиксируется на пластине. Резистор для этой модели подобран емкостного типа.

В данном случае конденсаторов имеется два. Первый из них расположен возле трансформатора. Предельная емкость его равняется 5 пФ. Второй конденсатор в цепи располагается под транзистором. Емкость его равняется целых 7 пФ, а отрицательное сопротивление максимум он может выдерживать на уровне 40 Ом. Предохранитель в данных электронных балластах не используется.

Схема электронного балласта на транзисторах EN13003A

Схема электронного балласта для люминесцентной лампы с транзисторами EN13003A является на сегодняшний день довольно сильно распространенной. Выпускаются модели, как правило, без регуляторов и относятся к классу бюджетных приборов. Однако прослужить устройства способны долго, и предохранители у них имеются. Если говорить про трансформаторы, то они подходят только понижающего типа.

Устанавливается транзистор в цепи возле дросселя. Система защиты у таких моделей в основном используется стандартная. Контакты приборов защищены динисторами. Также схема электронного балласта на 13003 включает в себя конденсаторы, которые часто устанавливаются с емкостью около 5 пФ.

Использование понижающих трансформаторов

Схема электронного балласта для люминесцентной лампы с понижающими трансформаторами часто включает в себя регуляторы напряжения. В данном случае транзисторы используются, как правило, открытого типа. Многими специалистами они ценятся за высокую проводимость тока. Однако для нормальной работы устройства очень важен качественный динистор.

Для понижающих трансформаторов часто используют операционные аналоги. В первую очередь они ценятся за свою компактность, а для электронных балластов это является существенным преимуществом. Дополнительно они отличаются пониженной чувствительностью, и небольшие сбои в сети для них нестрашны.

Применение векторных транзисторов

Векторные транзисторы в электронных балластах применяются очень редко. Однако в современных моделях они все-таки встречаются. Если говорить про характеристики компонентов, то важно отметить, что отрицательное сопротивление они способы держать на уровне 40 Ом. Однако с перегрузками они справляются довольно плохо. В данном случае большую роль играет параметр выходного напряжения.

Если говорить про транзисторы, то для указанных трансформаторов они подходят больше ортогонального типа. Стоят они на рынке довольно дорого, однако расход электроэнергии у моделей крайне низок. В данном случае модели с векторными трансформаторами по компактности значительно проигрывают конкурентам с понижающими конфигурациями.

Схема с интегральным котроллером

Электронный балласт для люминесцентных ламп с интегральным контроллером довольно прост. В данном случае трансформаторы применяются понижающего типа. Непосредственно конденсаторов в системе имеется два. Для понижения предельной частоты у модели имеется динистор. Транзистор используется в электронном балласте операционного типа. Отрицательное сопротивление он способен выдерживать не менее 40 Ом. Выходные триоды в моделях данного типа практически никогда не используются. Однако предохранители устанавливаются, и при сбоях в сети они помогают сильно.

Применение низкочастотных триггеров

Триггер на электронный балласт для люминесцентных ламп устанавливается в том случае, когда отрицательное сопротивление в цепи превышает 60 Ом. Нагрузку с трансформатора он снимает очень хорошо. Предохранители при этом устанавливаются очень редко. Трансформаторы для моделей этого типа используются лишь векторные. В данном случае понижающие аналоги неспособны справляться с резкими скачками предельной тактовой частоты.

Непосредственно динисторы в моделях устанавливаются возле дросселей. По компактности электронные балласты довольно сильно отличаются. В данном случае многое зависит от используемых компонентов устройства. Если говорить про модели с регуляторами, то места они требуют очень много. Также они способны работать в электронных балластах только на два конденсатора.

Модели без регуляторов очень компактны, однако транзисторы для них могут использоваться лишь ортогонального типа. Отличаются они хорошей проводимостью. Однако следует учитывать, что данные электронные балласты на рынке покупателю обойдутся недешево.