» » Искусственный свет для растений. Фитолампы: лампы для комнатных растений и подсветки рассады

Искусственный свет для растений. Фитолампы: лампы для комнатных растений и подсветки рассады
Цикл статей об освещении растений с сайта toptropicals.com

Часть 1. Для чего освещать растения

Комнатным растениям очень не повезло: им приходится расти в "пещере", а все знают, что в пещерах растения не растут. Самым счастливым растениям достаются солнечные подоконники, но и подобное расположение по отношению к свету - это, скорее, аналог подлеска под высоким деревом, когда солнце достаётся только либо ранним утром, либо вечером, да и то - рассеянное листвой дерева.
Пожалуй, самым уникальным вариантом освещения растений было мое предыдущее жилище, когда мы жили на восемнадцатом этаже отдельно стоящего дома. Окна были большими (почти во всю стену), никакие другие дома или деревья их не загораживали. Мои растения совершенно не нуждались в подсветке и умудрялись цвести по 5-6 раз в год (например, бугенвиллии и каллистемоны). Но, сами понимаете, такой отдельно стоящий дом - явление довольно редкое.
Обычно растениям в комнатных условиях очень не хватает света (причем не только зимой, но и летом), а мало света - нет развития, нет роста, нет цветения. Тут и возникает вопрос о досвечивании растений, чтобы возместить им недостаток освещения в условиях комнаты-"пещеры".
Иногда растения выращиваются полностью без дневного освещения - лишь за счет светильников (например: в помещении, где нет окон; либо если растения находятся далеко от окна).
Прежде чем заниматься освещением растений, вам нужно определиться: собираетесь ли вы их досвечивать или полностью освещать. Если нужно только досвечивать растения, то в этой ситуации можно обойтись довольно дешевыми люминесцентными светильниками, почти не заботясь об их спектре.
Светильники устанавливают над растениями примерно в 20 сантиметрах от верхнего листа. В дальнейшем нужно предусмотреть возможность их перемещения (светильников или растений). Я обычно размещала светильники выше чем положено, а затем "подтягивала" растения к лампам, используя перевернутые вверх дном горшки. Как только растения подрастут, горшок-подставку можно заменить на меньший или убрать.
Еще один вопрос: когда вы уже пристроили светильники, сколько часов в день досвечивать? Тропическим растениям для полноценного развития нужно 12-14 часов светового дня. Тогда они и развиваться будут хорошо, и цвести. Значит, нужно включать подсветку за пару часов до того, как на улице посветлеет, и выключать через несколько часов после того, как стемнеет.
При полном искусственном освещении растений нужно учитывать спектр освещения. Обычными лампами тут не обойтись. Если дневного света ваши растения не видят, то для них необходимо установить лампы со специальным спектром - для растений и/или аквариумов.
Очень удобно при досвечивании или полном освещении растений пользоваться таймером-реле. Удобнее всего - двухрежимным, то есть чтобы реле позволяло обеспечивать растения светом и утром, и вечером.

Попробуйте досвечивать растения, и вы сами заметите - насколько лучше они развиваются, когда им хватает света!

Галка Охапкина

Часть 2. Загадочные люмены и люксы.

В этой части будет очень кратко рассказано об основных понятиях, с которыми сталкиваются те цветоводы, кто пытается разобраться в огромном многообразии ламп для освещения растений.

Основные понятия

Люмены и люксы часто путают. Эти величины являются единицами измерения светового потока и освещенности, которые нужно различать.
Электрическая мощность лампы измеряется в ваттах, а световой поток ("световая мощность") - в люменах (Лм). Чем больше люменов, тем больше света дает лампа. Аналогия со шлангом для полива растений - чем больше открыт кран, тем "мокрее" будет всё вокруг.
Световой поток характеризует источник света, а освещенность - поверхность, на которую падает свет. По аналогии со шлангом - вам нужно знать, сколько воды попадает в ту или иную точку. От этого будет зависеть, сколь долго вам нужно поливать растения на грядке.
Освещенность измеряется в люксах (Лк). Источник света со световым потоком в 1 Лм, равномерно освещающий поверхность площадью 1 кв.м, создает на ней освещенность в 1 Лк.

Полезные правила

Освещенность на поверхности обратно пропорциональна квадрату расстояния от лампы до поверхности. Если вы передвинули лампу, висевшую над растениями на высоте полметра, на высоту одного метра от растений, увеличив таким образом расстояние между ними в два раза - то освещенность растений уменьшиться в четыре раза. Об этом надо помнить, когда вы проектируете систему для освещения растений.
Освещенность на поверхности зависит от величины угла, под которым освещается эта поверхность. Например: солнце в летний полдень, находясь высоко в небе, создает на поверхности земли освещенность в несколько раз большую, чем солнце, низко висящее над горизонтом в зимний день. Если вы используете для освещения растений светильник прожекторного типа, то старайтесь, чтобы свет был направлен перпендикулярно растениям.

Спектр и цвет

Цвет излучения лампы характеризуется цветовой температурой (CCT - Correlated Color Temperature). Это основано на принципе того, что если нагревать, например, кусок металла, то его цвет изменяется от красно-оранжевого до синего. Температура нагреваемого металла, при которой его цвет наиболее близок к цвету лампы, называется цветовой температурой лампы. Она измеряется в градусах Кельвина.
Другим параметром лампы является коэффициент цветопередачи (CRI - color rendering index). Этот параметр показывает, насколько близки цвета освещаемых объектов к истинным цветам. Эта величина имеет значение от нуля до ста. Например, натриевые лампы обладают низкой цветопередачей: все предметы под ними кажутся одного цвета. Новые модели люминесцентных ламп имеют высокий CRI. Старайтесь использовать лампы с высоким значением CRI, чтобы ваши растения выглядели привлекательней. Эти два параметра обычно указываются на маркировке люминесцентных ламп. Например, /735 - означает лампу со значением CRI=70-75, CCT=3500K - лампа тепло-белого цвета, /960 - лампа с CRI=90, CCT=6000K - лампа дневного света.

CCT (K) Лампа Цвет
2000 Натриевая лампа низкого давления (используется для уличного освещения), CRI<10 Оранжевый - восход-заход солнца
2500 Натриевая лампа высокого давления без покрытия (ДНаТ), CRI=20-25 Желтый
3000-3500 Лампа накаливания, CRI=100, CCT=3000К
Люминесцентная лампа тепло-белого цвета (warm-white), CRI=70-80
Галогенная лампа накаливания, CRI=100, ССТ=3500K
Белый
4000-4500 Люминесцентная лампа холодного цвета (cool-white), CRI=70-90
Металлогалоидная лампа (metal-halide), CRI=70
Холодно-белый
5000 Ртутная лампа с покрытием, CRI=30-50 Светло-голубой - полуденное небо
6000-6500 Люминесцентная лампа дневного света (daylight), CRI=70-90Металлогалоидная лампа (metal-halide, ДРИ), CRI=70Ртутная лампа (ДРЛ) CRI=15 Небо в облачный день

В результате процесса фотосинтеза, происходящего в растениях, энергия света превращается в энергию, используемую растением. В процессе фотосинтеза растение поглощает углекислый газ и выделает кислород. Свет поглощается различными пигментами в растении, в основном, хлорофиллом. Этот пигмент поглощает свет в синем и красном участках спектра.Помимо фотосинтеза существуют и другие процессы в растениях, на которые свет различных участков спектра оказывает свое влияние. Подбором спектра, чередованием длительности светлого и темного периодов можно ускорять или замедлять развитие растения, сокращать вегетационный период и т.д.
Например, пигменты с пиком чувствительности в красной области спектра отвечают за развитие корневой системы, созревание плодов, цветение растений. Для этого в теплицах используются натриевые лампы, у которых большая часть излучения приходится на красную область спектра. Пигменты с пиком поглощения в синей области отвечают за развитие листьев, рост растения и т.д. Растения, выросшие с недостаточным количеством синего света (например, под лампой накаливания), более высокие - они тянутся вверх, чтобы получить побольше "синего света". Пигмент, который отвечает за ориентацию растения к свету, также чувствителен к синим лучам.
Отсюда следует важный вывод: лампа, предназначенная для освещения растений, должна содержать как красные, так и синие цвета.
Многие фирмы-производители люминесцентных ламп предлагают лампы со спектром, оптимизированным для растений. Они лучше для растений, чем обычные люминесцентные (используемые для освещения помещений). Такую лампу имеет смысл приобрести, если вам необходимо заменить старую лампу: при одинаковой мощности специальная лампа дает больше "полезного" для растений света. Но если вы устанавливаете новую систему для освещения растений, то не гонитесь за этими специализированными лампами, которые намного дороже обычных. Установите более мощную лампу с высоким коэффициентом цветопередачи (маркировка лампы - /9..). В ее спектре будут все необходимые составляющие, и света она даст намного больше, чем специальная лампа.


Спектр поглощения хлорофилла (по горизонтали - длина волны в nm)

Удафф
www.TopTropicals.com

Часть 3: лампы для освещения растений

В этой части будут рассмотрены типы ламп, используемые для освещения растений.
Лампы для освещения растений бывают двух видов - лампы накаливания, в которых есть спираль, и газоразрядные лампы, где свет генерируется при электрическом разряде в смеси газов. Лампы накаливания могут прямо включаться в розетку. Газоразрядные лампы требуют специальной пускорегулирующей аппаратуры (называемой также балластом ) - эти лампы нельзя включать в розетку , несмотря на то, что некоторые из них своими цоколями напоминают лампы накаливания. Только новые компактные люминесцентные лампы со встроенным балластом можно вкручивать в патрон.

ЛАМПЫ НАКАЛИВАНИЯ
К этим лампам, помимо обычных ламп накаливания, которые вкручиваются в люстру на потолке, относятся и некоторые другие лампы:

- Галогенные лампы , в которых внутри колбы находится смесь газов, позволяющая увеличить яркость и срок службы ламп. Не путайте эти лампы с газоразрядными металлогалоидными, которые часто называют металлогалогенными. В новых лампах используется смесь газов криптона и ксенона, за счет этого яркость свечения спирали еще выше.

- Неодимовые лампы , колбы которых изготовлены из стекла с примесью неодима (Chromalux Neodym, Eurostar Neodymium). Это стекло поглощает желто-зеленую часть спектра, и освещаемые объекты визуально кажутся ярче. В действительности лампа дает не больше света, чем обычная.

Лампы накаливания не стоит использовать для подсветки растений.
Они не подходят по двум причинам - в их спектре отсутствуют синие цвета, и у них малая светоотдача (10-12 Лм/Вт). Все лампы накаливания сильно греются, поэтому их нельзя размещать вплотную к растениям - иначе растения получат ожоги. А размещение этих ламп на расстоянии более одного метра от растений практически ничего им не дает. Поэтому в комнатном цветоводстве такие лампы применяются исключительно для подогрева воздуха в тепличках и оранжереях. Другое применение лампы накаливания - совместно с люминесцентной лампой, в спектре которой мало красного света. Например, комбинация лампы холодного света и лампы накаливания обладает достаточно хорошим спектром. Тем не менее, лучше использовать натриевую лампу вместо лампы накаливания. В последнее время в продаже появились специальные лампы для подсветки растений, например OSRAM Conсentra Spot Natura со встроенным рефлектором. Эти лампы отличаются от обычных ценой (около 80-100 рублей в Москве за лампу мощностью 75-100 Вт). Но принцип действия, а, следовательно, и эффективность этих ламп такая же, как и у обычных ламп накаливания.

ЛЮМИНЕСЦЕНТНЫЕ ЛАМПЫ ОБЩЕГО НАЗНАЧЕНИЯ
Лампы этого типа известны каждому - это стандартные источники света в помещениях. Люминесцентные лампы более приспособлены для подсветки растений, чем лампы накаливания. Из "плюсов" можно отметить высокую светоотдачу (50-70 Лм/Вт), низкое тепловое излучение и большой срок службы. Недостатком таких ламп является то, что их спектр не совсем эффективен для подсветки растений. Тем не менее, если света достаточно, то спектр не столь уж важен. Для работы этих ламп требуются светильники со специальной пускорегулирующей аппаратурой (ПРА, балласт). Эта аппаратура бывает двух типов - электромагнитная (ЭМПРА - дроссель со стартером) и электронная (ЭПРА, электронный балласт). Вторая много лучше - лампы не мерцают при включении и работе, увеличивается срок службы ламп и количество света, излучаемое лампой. Некоторые электронные балласты позволяют регулировать яркость свечения ламп, например, от внешнего датчика освещенности. Проблема только в одном: если простейший дроссель стоит в Москве около 200 рублей, то цены на электронные балласты начинаются от 900 рублей, а регулируемые электронные балласты стоят более 2000 рублей без регулирующего устройства, которое стоит еще от $70 до $90 (одно такое устройство может обслуживать много светильников).
Мощность лампы зависит от ее длины. Более длинные лампы дают больше света. Применять следует, по возможности, более длинные и мощные лампы, поскольку у них выше светоотдача. Иными словами, 2 лампы по 36 Вт лучше, чем 4 лампы по 18 Вт.
Лампы должны быть расположены не выше полуметра от растений. Оптимальное применение люминесцентных ламп - полки с примерно одинаковыми по высоте растениями. Лампы крепятся на расстоянии до 15 см для светолюбивых растений, и на расстоянии 15-50 см для предпочитающих полутень. При этом подсветка монтируется по всей длине полки или стеллажа.

ЛЮМИНЕСЦЕНТНЫЕ ЛАМПЫ СПЕЦИАЛЬНОГО НАЗНАЧЕНИЯ
Эти лампы отличаются от ламп общего назначения только покрытием на стеклянной колбе. За счет этого спектр этих ламп приближен к спектру, который требуется растениям. В Москве можно найти лампы таких производителей как OSRAM-Sylvania, Philips, GE и т.д. Ламп российского производства с оптимизированным для подсветки растений спектром пока не существует.
Цены на специальные лампы, как минимум, вдвое выше, чем на лампы общего назначения, но иногда это себя оправдывает. В качестве примера - личный опыт одного из авторов (А. Литовкин): "Когда к моим растениям подкралась первая зима, я заметил, что они стали если не чахнуть, то уж явно остановились в развитии. Решено было их подсвечивать: приобретён светильник на две лампы (1200 мм). В нем сначала были установлены лампы отечественного производства с холодным белым светом. Растения заметно оживились, но в рост трогаться не торопились. Затем (примерно через месяц) лампы общего назначения были заменены на OSRAM Fluora. И после этого растения, как говорится, "попёрли".
Если вы устанавливаете лампу вместо старой, то имеет смысл использовать специализированную лампу для растений, поскольку при одинаковой мощности такая лампа дает больше "полезного" для растений света. Но при установке новой системы лучше поставить более мощные обычные лампы (лучше всего компактные люминесцентные большой мощности), поскольку они дают больше света, что более важно для растений, чем спектр.

КОМПАКТНЫЕ ЛЮМИНЕСЦЕНТНЫЕ ЛАМПЫ

Эти лампы бывают как со встроенным балластом, так и без него. В Москве представлены лампы ведущих мировых производителей и лампы отечественного производства (МЭЛЗ), по характеристикам почти не уступающие зарубежным аналогам, а по цене существенно дешевле.
Лампы со встроенным балластом отличаются от протяженных люминесцентных ламп общего назначения только меньшими габаритами и простотой использования - их можно вкручивать в обычный патрон. К сожалению, такие лампы выпускаются для замены ламп накаливания при освещении помещений, и их спектр похож на спектр ламп накаливания, что не оптимально для растений.
Лучше всего эти лампы использовать для подсветки нескольких компактно стоящих растений. Для получения нормального светового потока мощность ламп должна быть не менее 20 Вт (аналог 100 Вт для лампы накаливания), а расстояние до растений не более 30-40 сантиметров.
В настоящее время в продаже есть компактные люминесцентные лампы большой мощности - от 36 до 55 Вт. Эти лампы отличаются повышенной светоотдачей (на 20%-30%) по сравнению с обычными люминесцентными лампами, долгим сроком службы, отличной цветопередачей (CRI>90) и широким спектром, в котором есть необходимые растениям красные и синие цвета. Компактность позволяет эффективно использовать лампы вместе с рефлектором, что немаловажно. Эти лампы являются оптимальным выбором для освещения растений при небольшой мощности осветительной системы (до 200 Вт суммарной мощности). Недостатком является дороговизна и необходимость использования электронного балласта для ламп большой мощности.

ГАЗОРАЗРЯДНЫЕ ЛАМПЫ

На сегодняшний день, газоразрядные лампы - самый яркий источник света. Они компактны по размерам; их высокая светоотдача позволяет осветить одной лампой растения, занимающие большую площадь. Вместе с этими лампами необходимо использовать специальные балласты. Следует отметить, что такие лампы имеет смысл использовать, если вам необходимо много света; при суммарной мощности менее 200-300 Вт лучшее решение - использование компактных люминесцентных ламп.
Для освещения растений используются три типа ламп: ртутные, натриевые и металлогалоидные, иногда называемые металлогалогенными.

РТУТНЫЕ ЛАМПЫ

Это наиболее исторически старый тип из всех газоразрядных ламп. Бывают лампы без покрытия, которые обладают низким коэффициентом цветопередачи (под светом этих ламп всё кажется мертвенно-синим), и более новые лампы с покрытием, которое улучшает спектральные характеристики. Светоотдача этих ламп невелика. Некоторые фирмы выпускают светильники для растений с использованием ртутных ламп, например, OSRAM Floraset. Если вы проектируете новую систему освещения, то лучше воздержаться от ртутных ламп.

Н АТРИЕВЫЕ ЛАМПЫ ВЫСОКОГО ДАВЛЕНИЯ

Это один из наиболее эффективных, с точки зрения светоотдачи, источников света. Спектр этих ламп воздействует преимущественно на пигменты растений красной зоны спектра, отвечающие за корнеобразование и цветение.Из того, что предлагается в продаже, предпочтительнее всего лампы Рефлакс ООО "Светотехника" серии ДнаТ (см. фото). Эти лампы изготовлены со встроенным отражателем, допускают эксплуатацию в светильниках без защитного стекла (в отличие от других натриевых ламп), имеют весьма значительный ресурс (12-20 тыс. часов). Натриевые лампы дают большое количество света, поэтому потолочным светильником большой мощности (250 Вт и выше) можно осветить сразу большую площадь - наилучшее решение для подсветки зимних садов и больших коллекций растений. Правда, в таких случаях их рекомендуется чередовать с ртутными или металлогалоидными лампами для балансировки спектра излучения.

МЕТАЛЛОГАЛОИДНЫЕ ЛАМПЫ

Это наиболее совершенные лампы для подсветки растений - высокая мощность, большой ресурс, оптимальный спектр излучения. К сожалению, эти лампы, особенно с улучшенным спектром излучения, дороже других ламп. В продаже есть новые лампы с керамической горелкой производства Philips (CDM), OSRAM (HCI) с повышенным коэффициентом цветопередачи (CRI=80-95). Отечественная промышленность выпускает лампы серии ДРИ. Область применения - та же, что и для натриевых ламп высокого давления.

Несмотря на то, что цоколь металлогалоидной лампы похож на цоколь лампы накаливания, для нее нужен специальный патрон.

Послесловие
Вместо послесловия - что и для чего пригодится.
*Если нужно дёшево что-то сделать на скорую руку, то используйте лампы накаливания или компактную люминесцентную лампу со встроенным балластом, которую можно вкрутить в обычный патрон.
*Несколько близко расположенных растений можно осветить разными способами. Десяток небольших растений примерно одной высоты (до полуметра) лучше всего освещать компактными люминесцентными лампами. Для высоких одиночных растений можно порекомендовать светильники прожекторного типа с газоразрядными лампами мощностью до 100 Вт.
*Если растения примерно одинаковой высоты расположены на стеллажах или на подоконнике, то используйте протяженные люминесцентные лампы или, что еще лучше, компактные лампы большой мощности. Обязательно используйте рефлекторы с люминесцентными лампами - они значительно увеличат полезный световой поток.
*Если у вас большой зимний сад, то установите потолочные светильники с газоразрядными лампами большой мощности (250 Вт и выше).
Большинство из описанных ламп можно купить в магазинах электротехники.

Сводная таблица ламп для освещения растений

Лампа накаливания Люминесцентная лампа Компактная люминесцентная лампа Газоразрядная лампа
Стоимость лампы Меньше $5, $10-15 специализи- рованная $5 - обычная, $10-20 - специализированная $5 - маломощные, для замены ламп накаливания, $15-40 - лампы мощностью 35-90 Вт и специализированные Меньше $20 - маломощная лампа $30-80 - лампа средней мощности, $50-150 - лампы больших мощностей
Стоимость балласта (ПРА) $5-10 - обычный,
$15-30 - электронный
Не нужен для ламп, которые вкручиваются в патрон $20-30 - электронный, многие лампы большой мощности работают только с электронным $20-50 - обычный $30 -100 - электронные, которые могут включать регулировку ламп и т.д.
Стоимость освети тельной системы <$10 - самодельный рефлектор с патронами $15-40 - система с лампами и балластом <$20 - самодельная
$30-100 - покупная
$100-500 - полностью укомплектованная система
Номинальный срок службы 750 час. - лампа
накаливания,
Более 2000 час. - галогенная
15-20 тыс. часов 15-20 тыс. часов 5-20 тыс. часов
Реальный срок службы при ежедневной подсветке 6 месяцев 9-12 месяцев Один-два года
Выделяемое тепло 90 Вт на 1000 Лм.
Практически вся энергия лампы выделяется в виде тепла
Небольшое 10-15 Вт на 1000 Лм. За счет того, что лампа длинная, выделяемое тепло не сконцентрировано в одном месте. Для мощной системы использование небольшого вентилятора от компьютера позволит решить проблему нагрева Очень немного тепла - 5-10 Вт на 1000 Лм, тепло сконцентрировано в одном месте. При применении мощных ламп необходима система охлаждения
Диапазон мощностей осветительной системы Имеет смысл использовать небольшие лампы для подсветки и подогрева Растения не очень больших размеров. Группы растений на полке или стеллаже Большие группы растений при суммарной мощности системы до 200-300 Вт. Большие группы растений и оранжереи - потолочное освещение

Часть 4. Выбор системы освещения

В трёх предыдущих частях, посвящённых освещению растений, мы рассказывали об основных понятиях и о различных типах ламп. В этой части речь пойдёт о расчете мощности ламп, практическом измерении освещенности и других важных моментах, связанных с данной темой. Вы узнаете, какую систему освещения лучше выбрать для каждой конкретной ситуации, сколько потребуется ламп для освещения того или иного растения, как измерить освещенность в домашних условиях, для чего нужны рефлекторы в осветительных системах.
Свет - один из самых важных факторов успешного роста растений; они "изготавливают еду" для себя путем фотосинтеза. Если растению мало света, то оно ослаблено и либо умирает от "голода", либо становится легкой добычей вредителей и болезней.

БЫТЬ ИЛИ НЕ БЫТЬ?

Итак, вы решили установить новую систему освещения для ваших растений. Прежде всего, ответьте на два вопроса.
· Чем ограничен ваш бюджет? Если на всю осветительную систему выделена небольшая сумма денег, которую вы "оторвали" от стипендии и вам необходимо "уложиться" в нее, то эта статья вам не поможет. Единственный совет - купите то, что сможете. Не тратьте силы и время на поиски. К сожалению, система освещения для растений или для аквариума - дело недешевое. Иногда более разумной альтернативой является замена светолюбивых растений на теневыносливые - лучше иметь ухоженный спатифиллум, который не требует много света, чем сокрушаться из-за полудохлой гардении, которой катастрофически его не хватает.
· Вы собираетесь просто перекантоваться до весны, по принципу "не до жиру, быть бы живу"? Тогда просто купите самую простую люминесцентную лампу. Если же вы хотите, чтобы ваши растения полноценно росли и даже цвели под лампами, тогда нужно потратить силы и средства на осветительную систему. Особенно, если вы выращиваете растения, которые круглый год растут в условиях искусственного освещения.
Если вы определились с ответами на эти вопросы и решили установить полноценную систему освещения, то тогда читайте дальше.

ЧТО ТАКОЕ ХОРОШЕЕ ОСВЕЩЕНИЕ

Три главных фактора определяют - хорошая ли система освещения или плохая:
· Интенсивность света . Света должно быть достаточно для растений. Слабый свет нельзя заменить длинным световым днем. Много света в комнатных условиях не бывает. Достичь освещенности, которая бывает ярким солнечным днем (более 100 тыс. Лк) достаточно сложно.
· Длительность освещения . Различные растения требуют различного светового дня. Многие процессы, например, цветение, определяются длительностью светового дня (фотопериодизм). Все видели красную пуансеттию (Euphorbia pulcherrima), продающуюся на Рождество и Новый год. Этот куст растет под окном нашего дома на юге Флориды и каждый год зимой, без ухищрений с нашей стороны, "делает все сам" - наш климат даёт ему то, что необходимо для образования красных прицветников - длинные темные ночи и яркие солнечные дни.
· Качество освещения . В предыдущих статьях я затрагивал этот вопрос, говоря о том, что растению необходим свет как в красной, так и синей области спектра. Как уже было сказано, необязательно применять специальные фитолампы - если вы используете современные лампы с широким спектром (например, компактные люминесцентные или металлогалоидные), то спектр у вас будет "правильным".
Помимо этих факторов, безусловно, важны и другие. Интенсивность фотосинтеза ограничивается тем, чего не хватает растению в данный момент: при низкой освещенности это - свет, а когда света много, то, например, - температура, или - концентрация углекислого газа и т.д. При выращивании аквариумных растений часто случается, что при сильном освещении концентрация углекислого газа в воде становится ограничивающим фактором, и более сильный свет не приводит к увеличению темпов фотосинтеза.

СКОЛЬКО НУЖНО СВЕТА РАСТЕНИЯМ

По требованиям к свету растения можно разделить на несколько групп. Цифры для каждой из групп достаточно приближенные, поскольку многие растения могут себя хорошо чувствовать как на ярком свету, так и в тени, адаптируясь к уровню освещенности. Для одного и того же растения необходимо разное количество света в зависимости от того, развивается ли оно вегетативно, цветет или плодоносит. С энергетической точки зрения, цветение - процесс, который расходует "впустую" большое количество энергии. Растению надо вырастить цветок и снабжать его энергией - при том, что сам цветок не вырабатывает энергии. А плодоношение - еще более "расточительный" процесс. Чем больше света, тем больше энергии "от лампочки" растение сможет запасти для цветения, тем более красивым будет ваш гибискус, тем больше цветков будет на кусте жасмина.
Ниже приведены некоторые растения, предпочитающие те или иные световые условия; уровень освещенности выражен в люксах (про люмены и люксы уже было сказано ранее). Здесь я повторю только, что люксы характеризуют, насколько "светло" растениям, а люмены характеризуют лампы, которыми вы освещаете эти растения.

· Яркий свет
. К любящим яркий свет растениям относятся те, которые в природе растут на открытом месте (большинство деревьев, пальм, суккуленты, бугенвиллия, гардения, гибискус, иксора, жасмин, плюмерия, тунбергия, кротоны, розы, др.). Эти растения предпочитают высокий уровень освещения - не менее 15-20 тыс. люкс, а некоторые растения для успешного цветения требуют 50 и более тыс. Лк. Большинство пестролистных растений требуют высокой освещенности - иначе листья могут "вернуться к однотонной окраске".

· Умеренный свет
. К любящим умеренный свет растениям относятся растения "подлеска" (бромелиевые, бегонии, фикус, филодендрон, каладиум, хлорофитум, бругманзия, брунфельсия, клеродендрум, кроссандра, мединилла, пандорея, рутия, барлерия, тибухина, др.). Желаемый уровень освещенности для них составляет 10-20 тыс. Лк.

· Слабый свет
. Понятие "тенелюбивые растения" не совсем верно. Все растения любят свет, включая стоящую в самом темном углу драцену. Просто некоторые растения могут расти (скорее, существовать) при слабом освещении. Если вы не гонитесь за скоростью роста, то они будут хорошо себя чувствовать и при слабом освещении. В основном, это растения нижнего яруса (хамедорея, вайтфельдия, антуриум, дифенбахия, филодендрон, спатифиллум, эхинантус, др.). Им достаточно от 5 до 10 тыс. люкс.
Приведенные уровни освещенности достаточно приблизительные и могут служить отправной точкой для выбора системы освещения. Еще раз подчеркну, что цифры эти - для полноценного роста и цветения растения, а не для "зимовки", когда можно обойтись меньшим уровнем освещенности.

ИЗМЕРЕНИЕ ОСВЕЩЁННОСТИ

Итак, теперь вы знаете, сколько света необходимо вашему растению и хотите проверить, получает ли оно всё, что ему полагается. Все теоретические выкладки хороши, однако лучше измерить реальную освещенность там, где стоят растения. Если у вас есть люксметр, то вам повезло (на фото). Если люксметра нет, то не отчаивайтесь. Экспонометр фотоаппарата - тот же люксметр, только вместо освещенности выдающий значения выдержки, т.е. времени, на которое нужно открыть затвор камеры. Чем меньше освещенность, тем больше время. Все просто.
Если у вас есть внешний экспонометр, то положите его в то место, где вы измеряете освещенность, так чтобы светочувствительный элемент был перпендикулярен направлению падающего на поверхность света.

Если вы используете камеру, то положите лист белой матовой бумаги (см.рис.справа)перпендикулярно направлению падающего света (не надо использовать глянцевую бумагу - она даст неверные результаты). Выберите размер кадра так, чтобы лист занимал весь кадр. Фокусироваться на него необязательно. Выберите чувствительность пленки - 100 единиц (современные цифровые камеры позволяют "имитировать" чувствительность пленки). По значениям выдержки и апертуры определите освещенность. Если установить значение чувствительности пленки в 200 единиц, то табличные значения необходимо уменьшить вдвое, если установлено значение 50 единиц, то значения увеличиваются в два раза. Переход к следующему, более высокому диафрагменному числу также увеличивает значения в два раза. Таким способом можно примерно оценить уровень освещенности там, где стоят ваши растения.

ИСПОЛЬЗОВАНИЕ РЕФЛЕКТОРА

Если вы используете люминесцентную лампу без рефлектора, то вы уменьшаете полезный свет в несколько раз. Как несложно понять - только тот свет, который направлен вниз, попадает на растения. Свет, который направлен вверх - бесполезен. Тот свет, который слепит вам глаза, когда вы смотрите на открытую лампу, также бесполезен. Хороший рефлектор направляет свет, слепящий глаза, вниз - на растения. Результаты моделирования люминесцентной лампы показывают, что при использовании рефлектора освещенность в центре возрастает почти в три раза, а световое пятно на поверхности становится более концентрированным - светильник освещает растения, а не всё вокруг. Большинство светильников, продаваемых в магазинах бытовой техники, не имеет рефлектора или имеет то, что рефлектором назвать стыдно. Специальные системы с рефлекторами для освещения растений или аквариума стоят очень дорого. С другой стороны, сделать рефлектор своими руками несложно.

КАК СДЕЛАТЬ РЕФЛЕКТОР ДЛЯ ЛЮМИНЕСЦЕНТНОЙ ЛАМПЫ

Форма рефлектора, особенно изготовленного для одной-двух ламп, не имеет принципиального значения. Любая "хорошая" форма рефлектора, у которой число отражений не более одного и возврат света в лампу минимален, будет иметь примерно одинаковую эффективность в пределах 10-15%. На рисунке показан поперечный разрез рефлектора. Видно, что его высота должна быть такой, чтобы все лучи выше граничного (луч 1 на рисунке), перехватывались рефлектором - в таком случае светильник не будет слепить глаза.
Задавшись направлением отраженного граничного луча (например, вниз или под углом), можно построить перпендикуляр к поверхности рефлектора в точке отражения (точка 1 на рисунке), который делит угол между падающим и отраженным лучом пополам - закон отражения. Таким же образом определяется перпендикуляр и в остальных точках (точка 2 на рисунке).
Для проверки рекомендуется взять еще несколько точек - чтобы не получилась ситуация, изображенная в точке 3, где отраженный луч не идет вниз. После этого можно либо сделать многоугольный каркас, либо построить плавную кривую и по шаблону выгнуть рефлектор. Не следует размещать верхнюю точку рефлектора близко к лампе, поскольку лучи будут попадать обратно в лампу; при этом лампа будет греться.
Рефлектор можно сделать из алюминиевой фольги (например, пищевой), которая обладает достаточно высоким отражением. Также можно покрасить поверхность рефлектора белой краской. При этом его эффективность будет практически такой же, как и для "зеркального" рефлектора. Обязательно проделайте отверстия сверху рефлектора для вентиляции.

ДЛИТЕЛЬНОСТЬ И КАЧЕСТВО ОСВЕЩЕНИЯ

Длительность освещения обычно составляет 12-16 часов, в зависимости от вида растений. Более точные данные, а также рекомендации по фотопериодизму (например, о том, как заставить цвести упомянутую выше пуансеттию) можно найти в специальной литературе. Для большинства растений приведенной выше цифры вполне достаточно.
Про качество освещения уже говорилось не раз. (снимок из старой книги) Одной из иллюстраций может служить фотография растений, выращенных при освещении ртутной лампой (в то время других ламп практически не было) и лампой накаливания. Если вам не нужны длинные и тощие растения, то не используйте лампы накаливания или натриевые лампы без дополнительной подсветки люминесцентными или газоразрядными лампами с излучением в синей области спектра.
Помимо всего прочего, лампы должны подсвечивать растения так, чтобы на них было приятно смотреть. Натриевая лампа в этом смысле - не самая лучшая лампа для растений (на фото показана разница - как растения выглядят под натриевой лампой всравнении с освещением их металлогалоидной лампой).

РАСЧЁТ МОЩНОСТИ ЛАМП

Мы подошли к самому главному - сколько взять ламп для освещения растений. Рассмотрим две схемы освещения: люминесцентными лампами и газоразрядным светильником.
Количество люминесцентных ламп можно определить, зная средний уровень освещенности на поверхности. Необходимо найти световой поток в люменах (умножив освещенность в люксах на площадь поверхности в метрах). Потери света составляют примерно 30% для лампы, висящей на высоте 30 см от растений, и 50% для лампы на расстоянии 60 см от растений. Это верно, если вы используете рефлектор - без него потери возрастают в несколько раз. Определив световой поток ламп, можно найти их суммарную мощность, зная, что люминесцентные лампы дают примерно 65 Лм на Вт мощности.
Для примера рассчитаем, сколько ламп потребуется для освещения полки с растениями размером 0,5x1 м. Площадь освещаемой поверхности составит 0,5x1=0,5 кв.м. Допустим, что нам необходимо осветить растения, предпочитающие умеренный свет (15000 Лк). Осветить всю поверхность полки с таким уровнем освещенности будет сложно, поэтому мы сделаем оценку исходя из средней освещенности 0,7x15000 =11000 Лк. При этом растения, требующие больше света, поставим на полке непосредственно под лампу, где освещенность выше средней.
Итого, необходимо 0,5х11000=5500 Лм. Лампы на высоте 30 см должны давать примерно в полтора раза больше света (потери составляют 30%), т.е. около 8250 Лм. Суммарная мощность ламп должна быть около 8250/65=125 Вт, т.е. две компактные люминесцентные лампы по 55 Вт с рефлектором обеспечат нужное количество света. Если вы хотите поставить обычные трубки по 40 Вт, то их потребуется три штуки или даже четыре, поскольку трубки, размещенные близко друг к другу, начинают взаимно экранировать, и эффективность осветительной системы падает. Старайтесь использовать современные компактные люминесцентные лампы вместо обычных, по большей части устаревших, трубок. Если не использовать рефлектор, то в данной схеме придется брать в три или четыре раза больше ламп.

Расчёт количества люминесцентных ламп

1. Выберите уровень освещенности.

2. Необходимый световой поток на поверхности: L=0,7 x A x B (длина и ширина в метрах)

3. Необходимый световой поток ламп с учетом потерь (при наличии рефлектора):Lamp=L x C (C=1,5 для лампы на высоте 30 см и C=2 для лампы на высоте 60 см)

4.Суммарная мощность ламп: Power=Lamp/65

Для газоразрядных ламп расчет аналогичен. Специальный светильник с натриевой лампой мощностью 250 Вт обеспечивает средний уровень освещенности 15 тыс. Лк на площадке размером 1 кв.м.

Если известны светотехнические параметры светильника, то рассчитать освещенность совсем просто. Например, из фигуры слева видно, что светильник (OSRAM Floraset, 80W) освещает круг диаметром около метра на расстоянии чуть менее полуметра от лампы. Максимальное значение освещенности 4600 Лк.
Освещенность к краю спадает достаточно быстро, поэтому такой светильник может быть использован лишь для растений, которым нужно не очень много света.
На фигуре справа показана кривая силы света (тот же светильник, что и выше). Чтобы найти освещенность на расстоянии от светильника, необходимо значение силы света поделить на квадрат расстояния. Например, на расстоянии полметра под лампой значение освещенности будет равно 750/(0.5x0.5)=3000 Лк.
Очень важный момент при освещении растений - лампы не должны перегреваться: при повышении температуры их светоотдача резко падает. В рефлекторе должны быть отверстия для охлаждения ламп. Если используется много люминесцентных ламп, то следует использовать вентилятор для их охлаждения (например компьютерный). Мощные газоразрядные светильники обычно имеют встроенный вентилятор.

Заключение

В этом цикле статей были рассмотрены различные вопросы освещения растений. Но многие вопросы остались незатронутыми, например, выбор оптимальной электрической схемы включения ламп, что является важным моментом. Тем, кто интересуется этим вопросом, лучше обратиться к литературе или к специалистам.
Наиболее рациональная схема проектирования системы освещения растений начинается с определения необходимого уровня освещенности. Затем следует оценить количество ламп и их тип. И только после этого - спешить в магазин, чтобы купить лампы для освещения своих зелёных питомцев.

Удафф, Андрей Литовкин
www.TopTropicals.com

Уменьшение естественной инсоляции зимой приводит к световому голоданию комнатных растений и снижению интенсивности фотосинтеза. Светодиодная подсветка для растений и цветов решает эту проблему, но нужно уметь ее подобрать. Разберем как выбрать светодиодную лампу для растений и сделаем ее своими руками.

При недостаточной освещённости тормозятся процессы фотосинтеза что неизбежно приводит к торможению роста. Стебли истончаются, вытягиваются в сторону основного источника освещения. В период обильного цветения недостаток освещения приводит к самовольному сбросу бутонов.

Какая подсветка нужна для растений

Качество освещения для домашних цветов зависит от:

  • Спектра освещения;
  • интенсивности освещенности;
  • длительности освещения в течение суток.

Также влияют температура в помещении и концентрация углекислого газа, но в пределах квартиры влиять на эти параметры трудно, потому опустим их.

Требования к подсветке цветов и растений:

  • Отсутствие сильного тепловыделения, растения не должны перегреваться;
  • наличие в спектре излучения красного и синего света, необходимого для нормального процесса фотосинтеза.

Нагрев лампы

Из-за большого нагрева колбы, лампы накаливания непригодны для использования.

Натриевые лампы высокого давления (ДНАТ) лучше подходят для подсветки растений и широко применяются в теплицах. Но для домашних условий они мало пригодны из-за высокой мощности и соответственно значительного тепловыделения (колба может нагреваться до 600 градусов). Также они дорогие в эксплуатации (высокая стоимость трансформаторов розжига).

Светодиоды практически не греются (подробнее про ), потому подойдут для квартирного использования.

Спектр излучаемого света

Хлорофилл, находящийся в зелёных листьях, способен активно поглощать свет с длинной волны 380-710 нанометров, остальной спектр не активирует процессы фотосинтеза.


График эффективной длины волн для растения

Более короткие волны в спектре 380-500 нанометров стимулируют процессы деления клеток и увеличение зелёной массы, а излучение с длинной волны 500-700 нанометров необходимо для интенсивного цветения и плодоношения.

На графике наглядно видно, какой цветовой диапазон более эффективный для роста растения. Теперь сравним со спектром, излучаемым разными типами ламп.


Обыкновенные лампы накаливания мало подходят для подсветки комнатных растений, поскольку у них преобладает теплый спектр (700+ нанометров). Люминесцентные, которым отдают предпочтения за счет их стоимости, по спектру совсем бедные и уступают даже лампам накаливания.

Спектр излучения светодиодов для растений будет идеальным. Особенно при объединении холодного белого – 400-500нм и теплого белого 500-700нм цветов.

Преимущества подсветки цветов светодиодами

Минимальный срок службы светодиодов 50 000 часов при минимальных потерях в яркости.

Светодиоды более экономичны и расходуют меньше электроэнергии (по сравнению с лампами накаливания в несколько раз). Обладают крайне высоким КПД и выдают около 100 Лм на 1Вт потребленной энергии.

Светодиодные ленты излучают свет под углом 120 градусов, что позволяет сконцентрировать излучение на растениях, а не освещать комнату.

Компактные размеры позволяют создавать освещение для цветов любых форм.

Сравнительный анализ фитоламп для растений
Люминес-центная Ртутная Металл-галогенная Натриевая Свето-дидная
КПД ФАР 20-22% 10-12% 16-28% 26-30% 99%
Cрок службы 10-15 тыс. часов 10-15 тыс. часов 6-10 тыс. часов 16-24 тыс. часов 50-100 тыс. часов
Средняя световая отдача 50-80 лм/Вт 45-55 лм/Вт 80-100 лм/Вт до 150 лм/Вт до 100 лм/Вт
Минусы, ограничения использования Не годится для большой площади, не подходящий спектр для растений Экономически невыгодна Невысокий индекс цветопередачи Нет
Среднее потребление энергии 15-65 Вт/час 50-400 Вт/час 70-400 Вт/час 70-600 Вт/час 1 Вт/час на один диод или 15Вт на метр ленты
Коэффициент пульсации 22-70% 63-74% 30% 70% Менее 1%
КПД 50-70% 50-70% 50-70% 50-70% 90%

Специализированные светодиодные фитолампы для растений

Фитолампы – это красные и синие светодиоды с пиком интенсивности в диапазоне 440 и 660 нанометров, т.е. вся мощность излучения находится в эффективном для растений диапазоне.

Такой светодиодный светильник для растений применяется, если необходимо освещать небольшую площадь в 30-50 см 2 (одно растение или один горшок), т.к. светоизлучающий модуль имеет угол светового потока 120 градусов. Для подсветки большого количества растений (рассада) более рентабельно использовать светодиодные ленты и модули.

Фитолампа – хороший выбор для роста одного комнатного цветка, но цена на них неоправданно выше чем на обычные светодиодные ленты. При комбинировании теплого и холодного света светодиодных лент, вы получите тот же результат, но за меньшие деньги.

Важно. Решив использовать фитолампы, не покупайте формфактор типа «кукуруза». Большая часть излучения будет тратится впустую, даже при наличии рефлектора, снижая общую эффективность освещения.


Делаем светодиодную подсветку для цветов своими руками

Изготавливать светодиодные лампы под цоколь нет смысла. Это не практично. Мы будем использовать светодиодную ленту. Изготовление самодельной фитолампы для цветов сводится к трем пунктам:

  1. Рассчитать необходимую мощность светодиодного освещения для цветов.
  2. Подобрать модель ленты.
  3. Подобрать блок питания.

Расчет мощности светодиодного освещения

Необходимая освещенность для полноценного роста цветов составляет 10000-15000 Люкс. Исходя из этих цифр следует отталкиваться при расчёте подсветки для растений из светодиодов.

Разберем на конкретном примере . Делаем подсветку рассады в коробке размером 0,75 x 0,3 метра. Обеспечим растения освещением 15 000 Люкс.

15 000 Люкс – интенсивность излучения 15 000 Люмен, освещающего поверхность 1 м 2 с высоты 1 метр.

Наша освещаемая площадь:

0,75м * 0,3м = 0,225 м 2

Значит наша требуемая интенсивность света:

15000 Лм/м 2 * 0,225м 2 = 3375 Люмен

Определим высоту расположения освещения. Полученная интенсивность освещения в 3375 Лм нужна при расположении светодиодных ламп для растений на высоте 1м. Уменьшив высоту в два раза, требуемая интенсивность упадет в 4 раза (закон обратных квадратов). Разместив освещение на высоте 0,5м, получим интенсивность света:

Закон обратных квадратов — при увеличении расстояния до источника света в 2 раза, интенсивность светового излучения падает в 4 раза.

3375 / 4 = 845 Лм

Осталось подобрать LED ленту по этим параметрам.

Подбираем светодиодную ленту для подсветки цветов

Из расчета мы получили необходимую интенсивность света 845 Лм. При наших размерах коробки с цветами, лучше взять 2-4 отрезка ленты, длиной 0,75 м, чтобы равномерно покрыть всю площадь.

Световой поток LED ленты указывается из расчета на 1м. Если нам нужно только 0,75м, то необходимо добавить 25% к заявленной производителем интенсивности светового потока.

845 / 2 * 1,25 (компенсируем длину ленты) = 530 Люмен (для двух отрезков)

845 / 4 * 1,25 = 265 Люмен (для четырех отрезков)

Итоговые параметры ленты:

  • Интенсивность света (яркость) 465 Лм;
  • Температуру света – комбинируем теплый + холодный (3000К + 6000К);
  • Напряжение питания 12В – самый распространенный тип лент.

Нам подойдет SMD3528-W-60led — 3 метра, или SMD2835-W-60led — 1,5м. можете почитать про маркировку лент.

Выбор блока питания для светодиодных лент

Важно подобрать подходящий для драйвер для питания освещения комнатных растений. Критериев всего несколько:

  • Мощность (самый важный);
  • тип корпуса;
  • дополнительный функционал.

Расчет мощности блока питания . Рассмотрим на примере 3 метров ленты SMD 3528, 60 светодиодов на 1 погонный метр. Мощность 1 п.м. 4,8W. Прибавим 25% запаса на потерю в соединениях и проводниках и получим:

(длина) * 4,8W (мощность 1 метра) * 1,25 (запас) = 18W.

Подойдет любой БП мощностью больше 20Вт и напряжением 12В.

Тип корпуса . Бывают корпуса с разным уровнем пыле- влагозащиты, в алюминиевом или пластиковом корпусе с принудительным или естественным охлаждением.

  • Степень защиты выбираем в зависимости от условий эксплуатации. При высокой влажности (размещение внутри теплиц) степень защиты должна быть не ниже IP67.
  • Материал корпуса выбирайте любой. Преимуществ никаких не дает.
  • Принудительное охлаждение необходимо при высокой мощности блока питания (свыше 200W). В противном случае достаточно пассивного охлаждения.

Дополнительный функционал . Блоки питания могут иметь дистанционное управление с пульта, снабжаться lcd экранами, иметь таймеры. Дополнительный функционал приобретайте по желанию. Чем больше функций — тем дороже блок питания.

Подключение ленты к блоку питания

Подключайте все отрезки лед ленты параллельно к блоку питания. При подключении используйте коннекторы (подробнее про ). Один неразрывный участок ленты не должен превышать длины 5м.

Помните про класс защиты светодиодной ленты для растений и блока питания. Выбирая класс IP20 — размещайте освещение и питание в сухих, незапыленных местах. Если класс IP67,68 — размещать можно даже во влажных теплицах.

Варианты размещения освещения для рассады

  • Индивидуальная подсветка растений светодиодами.
  • Стеллажи для растений.

Точечное освещение растений позволит не только избежать ежегодной передислокации всех горшков и вазонов к месту зимовки, но и создать уникальный, неповторимый дизайн интерьера. В качестве источника освещения можно использовать миниатюрные, но мощные светодиоды.

Светодиоды для подсветки растений способны выдавать до 120 люмен и быть как подсветкой для растения, так и ночником.

Для индивидуальной подсветки можно купить специализированную светодиодную фитолампу, о которых мы писали выше. Метод расчета тот же, что и для светодиодной ленты.

Стеллажи для растений.

При большом количестве объектов освещения более целесообразно сделать полки снизу которых будет монтироваться светодиодная лента для растений.

Стеллажи можно оградить светоотражающими материалами: фольгой, металлизированным утеплителем. Это позволит обеспечить круглосуточную подсветку, но не будет мешать отдыхать в вечернее время. Также такая ширма увеличит освещенность растений на 10-15 процентов.

Вопрос озеленения квартиры сам по себе несложен. Комнатных растений, которые есть в продаже, - более 1000 видов. По этому поводу издано множество книг, статей в журналах, инструкций и т. д. Но почти все они рассматривают нахождение комнатных растений при естественном свете, пускай даже и в полутени.

Почему растениям нужно хорошее освещение?

Освещение требуется растениям для фотосинтеза, после которого появляются особые вещества, которые являются для них энергетическим и базовым материалом . В первую очередь образование этого вещества будет зависеть от объема и качества энергии освещения, которую поглощают листья. Но хлорофилл, непосредственно трансформирующий световой поток в органические соединения, имеет явно выраженные максимумы впитывания в синем и красном диапазоне спектра. При этом он довольно слабо впитывает желтый и оранжевый спектр и совершенно не поглощает инфракрасные и зеленые лучи.

Помимо хлорофилла, в поглощении освещения берут участие такие пигменты, как каротиноиды. Как правило, в листьях они незаметны из-за наличия хлорофилла, но в осеннее время, когда он разрушается, каротиноиды придают листве оранжевый и желтый цвет. В процессе фотосинтеза они имеют немаловажное значение, так как впитывают лучи света в синем и фиолетовом спектре, эти цвета преобладают в пасмурные дни .

Что же требуется комнатному растению?

Потребность растений в освещении в значительной степени зависит от температуры в комнате, чем теплей в помещении, тем большее количество света требуется растению. Таким образом, растениям в зимнее время приходится хуже всего в слабо отапливаемом и плохо подсвечиваемом помещении.

Световой режим . Продолжительность светового дня имеет не немаловажную роль в жизни любых растений. Для экваториальных цветов, которые привыкли к почти постоянному естественному освещению в 12 часов, скорей всего не понравится наше географическое расположение, когда минимальный световой день продолжается до 7 ч., а максимальный – больше 15 ч.

Досветка и искусственное освещение для растений

Вначале определим, когда действительно требуется досветка растений:

  • Во время содержания растений зимой и осенью при температуре более 22С в регионах с сильно коротким световым днем.
  • Во время содержания растений на подоконниках с прямым солнечным светом меньше 3,5 часов.
  • Во время содержания сеянцев растений зимой и осенью в регионах, где преобладает пасмурная погода.

В остальных случаях установка досветки просто неоправдана и, в некоторой степени, будет бесполезной тратой денег и сил.

Во время досветки растений необходимо учитывать такие факторы:

Искусственное освещение для комнатных растений

Запрещается использовать классические лампы накаливания в одиночку: в их спектре нет фиолетового и синего цвета, а инфракрасное облучение создает вытягивание цветов, их сильный нагрев, сушку листьев и бесполезно расходуют электричество.

Такие рекламируемые сегодня специальные лампочки накаливания в неодимовых колбах не показывают значительного улучшения. К ним можно отнести Фито-лампы компании Paulmann, лампы компании OSRAM и т. д. Невзирая на их высокое освещение за счет отражающего напыления и небольшого угла света, их спектральные показатели практически не отличаются от простых ламп накаливания.

Чуть лучшего эффекта можно достигнуть во время использования галогенных лампочек. Но, невзирая на более положительный состав спектра и повышенную светоотдачу, данный тип ламп вряд ли является оптимальными, поскольку нить создает большое выделение тепловой энергии.

Поддерживать привлекательный вид цветов и выращивать рассаду можно с помощью подсветки белыми люминесцентными лампами , они создают холодный свет (их спектр максимально приближен к солнечному спектру). Так как эти лампы не очень мощные, то их устанавливают одновременно несколько штук в специальные отражатели, усиливающие поток света и не позволяют мерцающему освещению проникать в помещение.

Как правило, их недостатки сводятся к повышенной рассеянности потока света (для достаточного света требуется много ламп) и к качеству создаваемого освещения. Лампы дневного света имеют очень много синего в своем спектре, потому их нужно устанавливать лишь в комбинации с остальными.

Предназначение люминесцентных ламп - это подсветка полок с цветами, досветка растений на окне. Полноценно растить под люминесцентными лампочками очень требовательные к освещению цветы практически невозможно.

Фито-люминесцентные лампы в форме трубок на самом деле эффективны в процессе фотосинтеза, экономичны, создают равномерный свет на поверхности и незначительно нагреваются во время работы, это дает возможность устанавливать их близко к цветам. Но их розоватая подсветка неестественна для людей, раздражает слизистые и значительно меняет зрительное восприятие декоративности цветов.

Фито-лампы с несколькими пиками излучения света в синем и красном спектре, специально сделаны для цветов, также они отлично подойдут для молодых побегов и взращивания сеянцев. Можно выбрать фитолампы с более натуральным освещением, но эффективность данных ламп чуть ниже, из-за излучения в неиспользуемом спектре растениями – зеленом, что, при этом, можно компенсировать добавлением мощных ламп.

Натриевые, метало-галогеновые и ртутные лампы - это, так называемые, газоразрядные лампочки повышенного давления. Их основное предназначение - создание мощного светового потока. Так, они лучше всего подойдут для подсветки парников, зимних садов, крупногабаритных одиночных цветов, растений, которые сильно требовательны к свету. О возможности установки данных ламп в квартирах говорят с осторожностью – такие лампы довольно дорогостоящи, используют большое количество электроэнергии и значительно нагреваются, многие работают в ультрафиолетовом спектре, что опасно для зрения.

Высота и варианты установки ламп над комнатными цветами

Самое лучшее месторасположение ламп достигается с условием, что освещение будет попадать на цветы сверху.

Очень высоко находящиеся лампы с целью осветить максимальное количество растений, в результате ничего не подсвечивают, так как освещенность снижается пропорционально расстоянию, например, установив высоту освещения с 25 см. до метра, освещение снизится в 30 раз. Оптимальной высотой для светолюбивых цветов является положение лампы (люминесцентной) приблизительно 17- 22 см.

Самый экономный вариант - делать направление потока света перпендикулярно растению, то есть, устанавливать лампу прямо над цветами, и оснащать световой источник отражателем. Можно приобрести готовые отражатели в аквариумных магазинах. С помощью рефлектора можно убрать чувство дискомфорта, если свет падает в глаза, но самое важное - направить практически без потерь основную часть потока освещения, которое зачастую тратится вхолостую. Фито-лампы имеют полноценный, требуемый только цветам спектр лучей и потому создают свет, который раздражает зрение человека. Именно по этой причине для фито-лампы особенно нуждаются в рефлекторах.

Желательно подвесить лампочку над цветами: при освещении сбоку растения растут, вытягиваясь к световому источнику. Если цветы подсвечиваются лишь искусственным освещением, то лампам нужно работать не меньше 12 часов ежедневно . Если искусственный свет применяется в качестве дополнительного, к примеру, зимой, то хватает 4-6 ч.

Высоту установки ламп в лучше всего сделать регулируемой, дабы при обнаружении ожогов на цветах можно было поменять высоту расположения ламп. Высокие стебли и бледный цвет говорят о том, что источник освещения расположен довольно высоко. Наименьшее расстояние цветка до лампочки накаливания 35см, до люминесцентной 7см, натриевой - полметра.

Как рассчитать количество люминесцентных ламп?

Расчет мощности подсветки и выбор вида лампочек полностью будет зависеть от потребности комнатных цветов в освещении. Все цветы по степени необходимости в подсветке можно поделить на:

  • теневыносливые;
  • любящие умеренную подсветку - тропические растения;
  • светолюбивые – растения, родина которых большие солнечные пространства.

Мощность освещения нужно подбирать в пропорции: на 1 дм. кв. площади цветка должно быть:

  • более 2,5 Вт для светолюбивых;
  • 1,5-2,5 Вт - для любящих умеренную подсветку;
  • 0,50-1,5 Вт – для теневыносливых.

По степени освещения 1 Ватт мощности люминесцентной лампочки создает 70 Лм, лампочка накаливания - в 4 раз меньше. С учетом из данной величины можно подсчитать количество и мощность лампочек для цветов. К примеру, размер подоконника, где находятся растения, равна 100дм. кв. Таким образом, будет необходима следующая общая мощность ламп:

  • 2,5Вт х 100дм. кв. = 250Вт.

На эту площадь будет необходимо примерно 2-3 лампочки с мощностью 70 Вт . Нужно сказать, что данный расчет приблизителен и считается только ориентиром в выборе их количества. Использовать желательно мощные и продолговатые лампы, так как у них высокая светоотдача. Говоря иначе, две лампы по 34Вт лучше, нежели четыре по 17Вт.

Подводя итог, нужно сказать, что длительность искусственного освещения будет зависеть непосредственно от естественного. Как правило, это пара часов сутра и несколько ночью. То есть лампы будут включены с утра, до времени, когда вам нужно идти на работу, а вечером до времени перед сном.

Но, в общем, это время обязано составлять примерно 5-7 часов . В пасмурную погоду до 10 часов. Если день солнечные, хватает и 4 часов. Помимо этого, доказано, что подсветка не показывает положительного эффекта, когда является нерегулярной, поскольку, включая лампы только «когда вспомните», вы лишь навредите комнатным цветам, сбивая их биоритмы.

Жизнь комнатных растений зависит не только от правильного ухода и полива, но и в значительной мере от правильного освещения. Но если летом света предостаточно, то, что делать в осенне-зимний период, когда небо затянуто тучами, а световой день невероятно короткий.

Растения нуждаются в освещении для проведения процесса фотосинтеза, благодаря которому в организме растений образовываются вещества, которые служат его строительным материалом. Естественно, что у разных типов растений процесс фотосинтеза протекает по-разному, из-за чего им требуется разное количество света. Если говорить в общем, то все декоративно-цветущие растения нуждаются в большем количестве света, чем декоративно-лиственные. К требовательным к освещению растениям можно отнести все виды растений из жарких стран, которые привыкли к большому количеству света в течение круглого года.

Кроме того, следует различать растения не только по тому, сколько освещения им необходимо, но и насколько ярким оно должно быть. Одни растения предпочитают прямые солнечные лучи, другие – мягкий рассеянный свет, ну а третьи любят полутень. Минимальная рекомендуемая освещенность, при которой растения нормально усваивают углекислоты и другие вещества – 1000 люкс, в то время как для полноценного развития большинству растений требуется освещенность не ниже 300-4000 люкс, ну а для требовательных к свету растений 10000-12000 и более люкс.

Если у вас дома нет специального прибора для измерения освещения – люксметра, можно попробовать определить хватает ли растениям света на глаз. О недостатке освещенности могут говорить такие признаки:

  • Растения развиваются очень медленно, стебель и листья тонкие и слабые
  • Новые бутоны практически не образовываются и имеют бледную окраску, а после формирования отпадают
  • Листья растения приобретают однотонную окраску, иногда могут желтеть и опадать

Какие лампы использовать для освещения

Выбор правильной лампы играет важнейшую роль в организации правильного освещения для растений. К примеру, очень многие считают, что обычная лампа накаливания с вольфрамовой нитью способна обеспечить достаточное количество света растениям. На самом же деле лампы накаливания способны преобразовать в видимый свет лишь 5% получаемой электрической энергии, преобразовывая оставшуюся энергию в инфракрасное (тепловое) излучение, которое вызывает перегрев и иссушение растений. Вдобавок ко всему выше сказанному, спектр излучения лампы накаливания состоит по большей части из красного цвета, в то время как растения нуждаются как в красном, так и синем цветах, вследствие чего растения замедляются в развитии.

Более подходящими лампами будут современные светодиодные и энергосберегающие лампы, выделяющие достаточное количество света, но спектр выделяемого ими света, также малопригоден для освещения растений.

Наиболее подходящими в данном случае будут люминесцентные лампы дневного света , дающие холодный дневной свет либо специальные натриевые лампы высокого давления, которые зачастую используются на поздних стадиях созревания и роста растений. Лампы таких типов обладают спектром излучения состоящего из красного и синего цветов. К тому же, они экономичны и имеют долгий срок службы.

Для того, чтобы растения не получили ожоги рекомендуется устанавливать осветительные приборы на расстоянии не менее 30-50 сантиметров от освещаемых растений. Также важно помнить, что растениям свойственен фототропизм — изменение направления роста растений в зависимости от направления падающего света. Если вы разместите освещение сбоку от ваших растений, то они развернуться к свету листьями и потеряют свою свою естественную форму, поэтому освещение рекомендуется размещать непосредственно нам растениями.

В этой части мы рассказываем о расчете мощности ламп, практическом измерении освещенности и т.д.

В предыдущих частях мы говорили об основных понятиях и о различных типах ламп, используемых для освещения растений. В этой части рассказывается о том, какую систему освещения выбрать, сколько потребуется ламп для освещения того или иного растения, как померить освещенность в домашних условиях и для чего нужны рефлекторы в осветительных системах.

Свет — один из самых важных факторов успешного содержания растения. Путем фотосинтеза растения «изготавливают еду» для себя. Мало света — растение ослаблено и либо умирает от «голода», либо становится легкой добычей вредителей и болезней.

Быть или не быть

Итак, вы решили установить новую систему освещения для ваших растений. Прежде всего ответьте на два вопроса.

  • Чем ограничен ваш бюджет? Если на всю осветительную систему выделена небольшая сумма денег, которую вы оторвали от стипендии, и вам необходимо уложиться в нее, то эта статья вам не поможет. Единственный совет — купите то, что сможете. Не тратьте силы и время на поиски. К сожалению, система освещения для растений или для аквариума — дело недешевое. Иногда более разумной альтернативой является замена светолюбивых растений на теневыносливые — лучше иметь ухоженный спатифиллум, который не требует много света, чем сокрушаться из-за полудохлой гардении, которой катастрофически его не хватает.
  • Вы собираетесь просто перекантоваться до весны, по принципу «не до жиру, быть бы живу»? Тогда просто купите самую простую люминесцентную лампу. Если же вы хотите, чтобы ваши растения полноценно росли и даже цвели под лампами, тогда нужно потратить силы и средства на осветительную систему. Особенно, если вы выращиваете растения, которые круглый год растут в условиях искусственного освещения, например, аквариумные.

Если вы определились с ответами на эти вопросы и решили установить полноценную систему освещения, то тогда читайте дальше.

Что такое хорошее освещение

Три главных фактора определяют — хорошая ли система освещения или плохая:

  • Интенсивность света . Света должно быть достаточно для растений. Слабый свет нельзя заменить длинным световым днем. Много света в комнатных условиях не бывает. Достичь освещенности, которая бывает ярким солнечным днем (более 100 тыс. Лк) достаточно сложно.
  • Длительность освещения . Различные растения требуют светового дня различной продолжительности. Многие процессы, например, цветение, определяются длительностью светового дня (фотопериодизм). Все видели красную пуансеттию (Euphorbia pulcherrima), продающуюся на Рождество и Новый год. Этот куст растет под окном нашего дома на юге Флориды и каждый год зимой, без ухищрений с нашей стороны, «делает все сам» — у нас есть то, что необходимо для образования красных прицветников — длинные темные ночи и яркие солнечные дни.
  • Качество освещения . В предыдущих статьях я затрагивал этот вопрос, говоря о том, что растению необходим свет как в красной, так и синей областях спектра. Как уже было сказано, необязательно применять специальные фитолампы — если вы используете современные лампы с широким спектром, например, компактные люминесцентные или металлогалоидные, то спектр у вас будет «правильным».

Помимо этих факторов, безусловно, важны и другие. Интенсивность фотосинтеза ограничивается тем, чего не хватает в данный момент. При низкой освещенности — это свет, когда света много, то, например, температура или концентрация углекислого газа и т.д. При выращивании аквариумных растений часто случается, что при сильном освещении, концентрация углекислого газа в воде становится ограничивающим фактором и более сильный свет не приводит к увеличению темпов фотосинтеза.

Сколько растениям нужно света

Растения можно разделить на несколько групп по требованиям к свету. Цифры для каждой из групп достаточно приближенные, поскольку многие растения могут себя хорошо чувствовать как на ярком свету, так и в тени, адаптируясь к уровню освещенности. Для одного и того же растения необходимо разное количество света в зависимости от того развивается ли оно вегетативно, цветет или плодоносит. С энергетической точки зрения, цветение — процесс, который расходует «впустую» большое количество энергии. Растению надо вырастить цветок и снабжать его энергией, при том, что сам цветок не вырабатывает энергии. А плодоношение еще более расточительный процесс. Чем больше света, тем больше энергии «от лампочки» растение сможет запасти для цветения, тем более красивым будет ваш гибискус, тем больше цветов будет на кусте жасмина.

Ниже приведены некоторые растения, предпочитающие те или иные световые условия. Уровень освещенности выражен в люксах. Про люмены и люксы уже было сказано в . Здесь я повторю только, что люксы характеризуют насколько «светло» растениям, а люмены — характеризуют лампы, которыми вы освещаете эти растения.

  • Яркий свет . К этим растениям относятся те, которые в природе растут на открытом месте — большинство деревьев, пальм, суккуленты, бугенвиллия, гардения, гибискус, иксора, жасмин, плюмерия, тунбергия, кротоны, розы. Эти растения предпочитают высокий уровень освещения — не менее 15-20 тыс. люкс, а некоторые растения для успешного цветения требуют 50 и более тыс. Лк. Большинство пестролистных растений требуют высокой освещенности, иначе листья могут «вернуться» к однотонной окраске.
  • Умеренный свет . К этим растениям относятся растения «подлеска» — бромелиевые, бегонии, фикус, филодендрон, каладиум, хлорофитум, бругманзия, брунфельсия, клеродендрум, кроссандра, мединилла, пандорея, рутия, барлерия, тибухина. Желаемый уровень освещенности для них составляет 10-20 тыс. Лк.
  • Слабый свет . Понятие «тенелюбивые растения» не совсем верно. Все растения любят свет, включая стоящую в самом темном углу драцену. Просто некоторые растения могут расти (скорее существовать) при слабом освещении. Если вы не гонитесь за скоростью роста, то они будут себя хорошо чувствовать и при слабом освещении. В основном, это растения нижнего яруса — хамедорея, вайтфельдия, антуриум, дифенбахия, филодендрон, спатифиллум, эхинантус. Им достаточно от 5 до 10 тыс. люкс.

Приведенные уровни освещенности достаточно приблизительные и могут служить отправной точкой для выбора системы освещения. Еще раз подчеркну, что цифры эти для полноценного роста и цветения растения, а не для «зимовки», когда можно обойтись меньшим уровнем освещенности.

Измерение освещенности

Итак, теперь вы знаете, сколько света необходимо вашему растению и хотите проверить, получает ли оно все, что ему полагается. Все теоретические выкладки хороши, однако лучше померить реальную освещенность там, где стоят растения. Если у вас есть люксметр, то вам повезло (на фото слева). Если люксметра нет, то не отчаивайтесь. Экспонометр фотоаппарата — тот же люксметр, только вместо освещенности выдающий значения выдержки, т.е. времени, на которое нужно открыть затвор камеры. Чем меньше освещенность, тем больше время. Все просто.

Если у вас есть внешний экспонометр, то положите его в то место, где вы измеряете освещенность, так чтобы светочувствительный элемент был перпендикулярен направлению падающего на поверхность света.

Если вы используете камеру, то положите лист белой матовой бумаги перпендикулярно направлению падающего света (не надо использовать глянцевую — она даст неверные результаты). Выберите размер кадра так, чтобы лист занимал весь кадр. Фокусироваться на него необязательно. Выберите чувствительность пленки — 100 единиц (современные цифровые камеры позволяют «имитировать» чувствительность пленки). По значениям выдержки и апертуры определите освещенность в таблице. Если установить значение чувствительности пленки в 200 единиц, то табличные значения необходимо уменьшить вдвое, если установлено значение 50 единиц, то значения увеличиваются в два раза. Переход к следующему, более высокому, диафрагменному числу также увеличивает значения в два раза. Таким способом можно примерно оценить уровень освещенности там, где стоят ваши растения.

Апертура

Выдержка

Освещенность (Лк) для пленки 100 единиц

Внешний экспонометр

Камера при наведении на лист бумаги

2.8 1/4 70 8
2.8 1/8 140 15
2.8 1/15 250 30
2.8 1/30 500 60
2.8 1/60 1000 120
2.8 1/125 2100 240
2.8 1/250 4300 1000
2.8 1/500 8700 2000
4 1/250 8700 2000
4 1/500 17000 4000
5.6 1/250 17000 4000
5.6 1/500 35000 8000
5.6 1/1000 70000 16000
8 1/250 35000 8000
8 1/500 70000 16000
8 1/1000 140000 32000

Использование рефлектора

Использование рефлектора позволяет увеличить полезный световой поток в несколько раз

Если вы используете люминесцентную лампу без рефлектора, то вы уменьшаете полезный свет в несколько раз. Как несложно понять, только тот свет, который направлен вниз, попадает на растения. Тот свет, который направлен вверх — бесполезен. Тот свет, который слепит вам глаза, когда вы смотрите на открытую лампу, также бесполезен. Хороший рефлектор напра- вляет свет, слепящий глаза, вниз на растения. Результаты моделирования люминесцентной лампы показывают, что освещенность в центре, при использовании рефлектора возрастает почти в три раза, а световое пятно на поверхности становится более концентрированным — светильник освещает растения, а не все вокруг.

Большинство светильников, продаваемых в магазинах бытовой техники, не имеет рефлектора или имеет то, что рефлектором называть не стоит. Специальные системы для освещения растений или аквариума с рефлекторами стоят очень дорого. С другой стороны, сделать самодельный рефлектор несложно.

Как сделать самодельный рефлектор для люминесцентной лампы

Форма рефлектора, особенно для одной-двух ламп, не имеет принципиального значения — любая «хорошая» форма, у которой число отражений не более одного и возврат света в лампу минимален, будет иметь примерно одинаковую эффективность в пределах 10-15%. На рисунке показан поперечный разрез рефлектора. Видно, что его высота должна быть такой, чтобы все лучи выше граничного (луч 1 на рисунке), перехватывались рефлектором — в таком случае светильник не будет слепить глаза.

Задавшись направлением отраженного граничного луча (например, вниз или под углом), можно построить перпендикуляр к поверхности рефлектора в точке отражения (точка 1 на рисунке), который делит угол между падающим и отраженным лучом пополам — закон отражения. Таким же образом определяется перпендикуляр и в остальных точках (точка 2 на рисунке).

Для проверки рекомендуется взять еще несколько точек, чтобы не получилась ситуация, изображенная в точке 3, где отраженный луч не идет вниз. После этого можно либо сделать многоугольный каркас, либо построить плавную кривую и по шаблону выгнуть рефлектор. Не следует размещать верхнюю точку рефлектора близко к лампе, поскольку лучи будут попадать обратно в лампу. При этом лампа будет греться.

Рефлектор можно сделать либо из алюминиевой фольги, например, пищевой, которая обладает достаточно высоким отражением. Также можно покрасить поверхность рефлектора белой краской. При этом его эффективность будет практически такой же, как и для «зеркального» рефлектора. Обязательно проделайте отверстия сверху рефлектора для вентиляции.

Длительность и качество освещения

На фото: томаты, выращенные под светом различных ламп. 1 — ртутная лампа без фильтров, 2, 3 — ртутная лампа с фильтрами, удаляющими различные части спектра. 4 — лампа накаливания. Из книги Bickford/Dunn “Lighting for Plant Growth” (1972)

Длительность освещения обычно составляет 12-16 часов, в зависимости от вида растений. Более точные данные, а также рекомендации по фотопериодизму (например, о том, как заставить цвести упомянутую выше пуансеттию) можно найти в специальной литературе. Для большинства растений приведенной выше цифры вполне достаточно.

Про качество освещения уже говорилось не раз. Одной из иллюстраций может служить фотография растений, выращенных при освещении ртутной лампой (снимок из старой книги, в то время других ламп практически не было) и лампой накаливания. Если вам не нужны длинные и тощие растения, то не используйте лампы накаливания или натриевые лампы без дополнительной подсветки люминесцентными или газоразрядными лампами с излучением в синей области спектра.

Помимо всего прочего, лампы для растений должны подсвечивать растения так, чтобы на них было приятно смотреть. Натриевая лампа в этом смысле не самая лучшая лампа для растений — на фото показано, как растения выглядят под такой лампой в сравнении с освещением металлогалоидной лампой.

Расчет мощности ламп

Итак мы подошли к самому главному — сколько взять ламп для освещения растений. Рассмотрим две схемы освещения: люминесцентными лампами и газоразрядным светильником.

Количество люминесцентных ламп можно определить, зная средний уровень освещенности на поверхности. Необходимо найти световой поток в люменах (умножив освещенность в люксах на площадь поверхности в метрах). Потери света составляют примерно 30% для лампы, висящей на высоте 30 см от растений, и 50% для ламп на расстоянии 60 см от растений. Это верно, если вы используете рефлектор. Без него потери возрастают в несколько раз. Определив световой поток ламп, можно найти их суммарную мощность, зная, что люминесцентные лампы дают примерно 65 Лм на Вт мощности.

Для примера оценим, сколько ламп потребуется для освещения для полки размером 0.5×1 метр. Площадь освещаемой поверхности: 0.5×1=0.5 кв.м. Допустим, что нам необходимо осветить растения, предпочитающие умеренный свет (15000 Лк). Осветить всю поверхность с такой освещенностью будет сложно, поэтому мы сделаем оценку, исходя из средней освещенности 0.7×15000 =11000 Лк, поставив растения, требующие больше света, под лампу, где освещенность выше средней.

Итого, необходимо 0.5х11000=5500 Лм. Лампы на высоте 30 см должны давать примерно в полтора раза больше света (потери составляют 30%), т.е. около 8250 Лм. Суммарная мощность ламп должна быть около 8250/65=125 Вт, т.е. две компактные люминесцентные лампы по 55 Вт с рефлектором обеспечат нужное количество света. Если вы хотите поставить обычные трубки по 40 Вт, то их потребуется три штуки или даже четыре, поскольку трубки, размещенные близко друг к другу, начинают взаимно экранировать, и эффективность осветительной системы падает. Старайтесь использовать современные компактные люминесцентные лампы вместо обычных, по большей части устаревших, трубок. Если не использовать рефлектор, то в данной схеме придется брать в три или четыре раза больше ламп.

Расчет количества люминесцентных ламп

  1. Выберите уровень освещенности.
  2. Необходимый световой поток на поверхности:
    L=0.7 x A x B
    (длина и ширина в метрах)
  3. Необходимый световой поток ламп с учетом потерь (при наличии рефлектора):
    Lamp=L x C
    (C=1.5 для лампы на высоте 30 см и C=2 для лампы на высоте 60 см)
  4. Суммарная мощность ламп:
    Power=Lamp/65

Для газоразрядных ламп расчет аналогичен. Специальный светильник с натриевой лампой мощностью 250 Вт обеспечивает средний уровень освещенности 15 тыс. Лк на площадке размером 1 кв.м.

Если известны светотехнические параметры светильника, то рассчитать освещенность совсем просто. Например, из фигуры слева видно, что светильник (OSRAM Floraset, 80W) освещает круг диаметром около метра на расстоянии чуть менее полуметра от лампы. Максимальное значение освещенности 4600 Лк. Освещенность к краю спадает достаточно быстро, поэтому такой светильник может быть использован лишь для растений, которым нужно не очень много света.

На фигуре слева показана кривая силы света (тот же светильник, что и выше). Чтобы найти освещенность на расстоянии от светильника, необходимо значение силы света поделить на квадрат расстояния. Например, на расстоянии полметра под лампой значение освещенности будет равно 750/(0.5×0.5)=3000 Лк.

Очень важный момент — лампы не должны перегреваться. При повышении температуры их светоотдача резко падает. В рефлекторе должны быть отверстия для охлаждения. Если используется много люминесцентных ламп, то следует использовать вентилятор для охлаждения, например компьютерный. Мощные газоразрядные светильники обычно имеют встроенный вентилятор.

Заключение

В этом цикле статей были рассмотрены различные вопросы освещения растений. Многие вопросы остались незатронутыми, например, выбор оптимальной электрической схемы включения ламп, что является важным моментом. Тем, кто интересуется этим вопросом, лучше обратится к литературе или специалистам.

Наиболее рациональная схема проектирования системы освещения начинается с определения необходимого уровня освещенности. Затем следует оценить количество ламп и их тип. И только после этого — спешить в магазин, чтобы купить лампы.

Отдельное спасибо коллективу сайта toptropicals.com , за разрешение публикации статьи на нашем ресурсе.