» » Параболический концентратор на даче. Как работает солнечный концентратор? Видео: самодельное воздушно-солнечное отопление

Параболический концентратор на даче. Как работает солнечный концентратор? Видео: самодельное воздушно-солнечное отопление

(Канада) разработала универсальный, мощный, эффективный и один из самых экономичных солнечных параболических концентраторов (CSP - Concentrated Solar Power) диаметром 7 метров, как для обычных домовладельцев, так и для промышленного использования. Компания специализируется на производстве механических устройств, оптики и электронной техники, что помогло ей создать конкурентный продукт.

По оценке самого производителя, солнечный концентратор SolarBeam 7M превосходит другие типы солнечных устройств: плоских солнечных коллекторов, вакуумных коллекторов, солнечных концентраторов типа «желоб».

Внешний вид солнечного концентратора Solarbeam

Как это работает?

Автоматика солнечного концентратора отслеживает движение солнца в 2-ух плоскостях и направляет зеркало точно на солнце, позволяя системе собирать максимальную солнечную энергию с рассвета до позднего заката. Независимо от сезона или места использования, SolarBeam поддерживает точность наведения на солнце до 0,1 градуса.

Падающие на солнечный концентратор лучи фокусируются в одной точке.

Расчеты и проектирование SolarBeam 7M

Стресс - тестирование

Для проектирования системы использовались методы 3D моделирования и программного стресс-тестирования. Тесты выполняются по методике МКЭ (анализ Методом Конечных Элементов) для расчета напряжений и перемещений деталей и узлов под воздействием внутренних и внешних нагрузок, чтобы оптимизировать и проверить конструкцию. Такое точное тестирование позволяет утверждать, что SolarBeam может работать в условиях экстремальных нагрузок от ветра и климатических условий. SolarBeam успешно прошел моделирование ветровой нагрузки до 160 км/час (44 м/с).

Стресс -тестирование соединения рамы параболического отражателя и стойки

Фотография узла крепления концентратора Solarbeam

Стресс-тестирование стойки солнечного концентратора

Уровень производства

Часто, высокая стоимость изготовления параболических концентраторов препятствуют их массовому использованию в индивидуальном строительстве. Использование штампов и больших сегментов из светоотражающего материала, сократили производственные издержки. Solartron использовал много инноваций, используемых в автомобильной промышленности, для уменьшения стоимости и увеличения объема выпускаемой продукции.

Надежность

SolarBeam был протестирован в суровых условиях севера, обеспечивает высокую производительность и долговечность. SolarBeam разработан для любых состояний погоды, в том числе высокой и низкой температуры окружающей среды, снеговой нагрузки, обледенения и сильных ветров. Система предназначена для 20 -ти и более лет эксплуатации с минимальным техническим обслуживанием.

Параболическое зеркало SolarBeam 7M способновы удержать до 475 кг льда. Это примерно равно 12,2 мм толщине ледяного покрова по всей площади 38,5 м2.
Установка штатно работает в снегопады из-за изогнутой конструкции зеркальных секторов и способности автоматически выполнять «авто очистку от снега».

Производительность (сравнение с вакуумными и плоскими коллекторами)

Q / A = F’(τα)en Kθb(θ) Gb + F’(τα)en Kθd Gd -c6 u G* - c1 (tm-ta) - c2 (tm-ta)2 – c5 dtm/dt

Эффективность для не-концентрирующих солнечных коллекторов была рассчитана по следующей формуле:

Efficiency = F Collector Efficiency – (Slope*Delta T)/G Solar Radiation

Кривая производительности для SolarBeam концентратора показывает общую высокую эффективность во всем диапазоне температур. Плоские солнечные коллекторы и вакуумированные показывают более низкую эффективность, когда требуются более высокие температуры.

Сравнительные графики Solartron и плоских/вакуумных солнечных коллекторов

Эффективность (КПД) Solartron в зависимости от разности температур dT

Важно отметить, что приведенная выше диаграмма не учитывает потери тепла от ветра. Кроме того, приведенные выше данные указывают максимальную эффективность (в полдень) и не отражает эффективность в течении для. Данные приведены для одного из самых лучших плоских и вакуумных коллекторов. В дополнение к высокой эффективности, SolarBeamTM производит дополнительно до 30% больше энергии, из-за отслеживания солнца по двум осям. В географических регионах, где преобладают низкие температуры, эффективность у плоских и вакуумированных коллекторов значительно снижается из-за большой площади поглотителя. SolarBeamTM имеет абсорбер площадью только 0,0625 м2 относительно площади сбора энергии 15,8 м2, чем достигаются низкие потери тепла.

Обратите внимание также, что в связи с применением двухосевой системы слежения, SolarBeamTM концентратор всегда будет работать с максимальной эффективностью. Эффективная площадь коллектора SolarBeam всегда равна фактическая площадь поверхности зеркала. Плоские (неподвижные) коллекторы теряют потенциальную энергию согласно уравнения ниже:
PL = 1 – COS i
где PL потери в энергии в %, от максимальной при смещении в градусах)

Система управления

Управления SolarBeam использует технологию «EZ-SunLock». С помощью этой технологии, система может быть быстро установлена и настроена в любой точке земли. Система слежения отслеживает солнце с точностью до 0,1 градуса и использует астрономический алгоритм. Система имеет возможность общей диспетчеризации через удаленные сети.

Нештатные ситуации, при которых «тарелка» автоматически будет припаркована в безопасное положение.

  • Если давление теплоносителя в контуре упадет ниже 7 PSI
  • При скорости ветра более 75км/ч
  • В случае отключения электроэнергии, ИБП (источник бесперебойного питания) перемещает тарелку в безопасное положение. Когда питание возобновляется, автоматическое слежение за солнцем продолжается.

Мониторинг

В любом случае, и особенно для промышленного применения, очень важно знать состояние вашей системы для обеспечения надежности. Вы должны быть предупреждены прежде, чем возникнет проблема.

SolarBeam имеет возможность осуществлять мониторинг через удаленную панель мониторинга SolarBeam . Эта панель проста в использовании и предоставляет важную информацию о статусе SolarBeam, диагностику и информацию о производстве энергии.

Удаленная настройка и управление

SolarBeam можно дистанционно настраивать и оперативно менять установки. «Тарелкой» можно управлять дистанционно с помощью мобильного браузера или ПК, упрощающие или делающие ненужными системы управления на месте установки.

Оповещения

В случае тревоги или необходимости обслуживания, устройство посылает сообщение по электронной почте назначенному обслуживающему персоналу. Все предупреждения могут быть настроены в соответствии пользовательскими предпочтениями.

Диагностика

SolarBeam имеет возможности удаленой диагностики: температуры и давления в системе, производство энергии и т.д. С первого взгляда вы видите статус работы системы.

Отчетность и графики

В случае необходимости получения отчетов по производству энергии, они могут быть легко получены для каждой «тарелки». Отчет может быть в виде графика или таблицы.

Монтаж

SolarBeam 7М изначально был разработан для крупномасштабных CSP установок, поэтому монтаж сделали максимально простым. Конструкция позволяет быстро собрать основные компоненты и не требует оптической юстировки, что делает монтаж и запуск системы недорогим.

Время монтажа

Бригада из 3 человек, может установить один SolarBeam 7М от начала до конца в течение 8 часов.

Требования к размещению

Ширина SolarBeam 7М составляет 7 метров с 3,5 метровым отступом. При установке нескольких SolarBeam 7М, на каждую систему необходимо отвести площадь примерно 10 х 20 метров, чтобы обеспечить максимальный солнечный сбор с наименьшим количеством затенения.

Сборка

Параболический концентратор спроектирован для возможности сборки на земле с использованием механической системы подъема, что позволяет быстро и легко установить фермы, зеркальные сектора и крепления.

Области применения

Получение электроэнергии с помощью установок ORC (Organic Rankine Cycle).

Установки промышленного опреснения воды

Тепловую энергию для завода по опреснению воды может поставлять SolarBeam

В любой промышленности, где требуется много тепловой энергии для технологического цикла, таких как:

  • Пищевая (варка, стерилизация, получение спирта, мойка)
  • Химическая промышленность
  • Пластиковая (Нагрев, вытяжка, сепарация, …)
  • Текстильная (отбеливание, стирка, прессование, парообработка)
  • Нефтяная (возгонка, осветление нефтепродуктов)
  • И многое другое

Место установки

Подходящим местом для установки являются регионы, получающие не менее 2000 кВт*ч солнечного света на м2 в год (кВт*ч/м2/год). Наиболее перспективными производители считаю следующие регионы мира:

  • Регионы бывшего Советского Союза
  • Юго-Западный США
  • Центральная и Южная Америка
  • Северная и Южная Африка
  • Австралия
  • средиземноморские страны Европы
  • Средний Восток
  • Пустынные равнины Индии и Пакистане
  • Регионы Китая

Спецификация модели Solarbeam-7M

  • Пиковая мощность - 31,5кВт (при мощности 1000Вт/м2)
  • Степень концентрации энергии - более 1200 раз (пятно 18см)
  • Максимальная температура в фокусе - 800°С
  • Максимальная температура теплоносителя - 270°С
  • Эксплуатационная эффективность - 82%
  • Диаметр рефлектора - 7м
  • Площадь параболического зеркала - 38,5м2
  • Фокусное расстояние - 3,8м
  • Потребление электроэнергии сервомоторами - 48W+48W / 24В
  • Скорость ветра при работе - до 75км/ч (20м/с)
  • Скорость ветра (в безопасном режиме) - до 160 км/ч
  • Отслеживание солнца по азимуту - 360°
  • Отслеживание солнца по вертикали - 0 - 115°
  • Высота опоры - 3,5м
  • Вес отражателя - 476 кг
  • Общий вес -1083 кг
  • Размер абсорбера - 25,4 х 25,4 см
  • Площадь абсорбера -645 см2
  • Объем теплоносителя в абсорбере - 0,55 литра

Габаритные размеры рефлектора

По принципу работы солнечные концентраторы сильно отличаются от . Мало того, солнечные электростанции теплового типа намного эффективней фотоэлектрических в силу ряда особенностей.

Задача солнечного концентратора – сфокусировать солнечные лучи на емкости с теплоносителем , которым могут выступать, например, масло или вода, хорошо поглощающие солнечную энергию. Методы концентрации бывают разными: параболоцилиндрические концентраторы, параболические зеркала, или гелиоцентрические установки башенного типа.

В одних концентраторах излучение солнца фокусируется вдоль фокальной линии, в других – в фокусной точке, где и расположен приемник. Когда солнечное излучение отражается с большей поверхности на меньшую поверхность (на поверхность приемника), достигается высокая температура, теплоноситель поглощает тепло, двигаясь через приемник. Система в целом содержит также аккумулирующую часть и систему передачи энергии.

Эффективность концентраторов сильно снижается в период облачности, поскольку фокусируется лишь прямое солнечное излучение. Именно по этой причине такие системы достигают самого высокого КПД в регионах, где уровень инсоляции особенно высок: в пустынях, в районе экватора. Для повышения эффективности использования солнечного излучения, концентраторы оснащаются специальными трекерами, следящими системами, обеспечивающими максимально точную ориентацию концентраторов в направлении солнца.

Поскольку стоимость солнечных концентраторов высока, а следящие системы требуют периодического обслуживания, их применение в основном ограничено промышленными системами генерации электроэнергии.

Такие установки могут использоваться в гибридных системах в совокупности, например, с углеводородным топливом, тогда аккумулирующая система обеспечит снижение себестоимости получаемого электричества. Это станет возможным, так как генерация будет происходить круглосуточно.

Параболоцилиндрические солнечные концентраторы бывают в длину до 50 метров, они имеют вид вытянутой зеркальной параболы. Такой концентратор состоит из массива вогнутых зеркал, каждое из которых собирает параллельные солнечные лучи, и фокусирует их в конкретной точке. Вдоль такой параболы, располагается труба с теплоносителем так, что на нее и фокусируются все отраженные зеркалами лучи. Чтобы снизить потери тепла, трубу окружают стеклянной трубкой, которая протянута вдоль линии фокуса цилиндра.

Такие концентраторы располагаются рядами в направлении север-юг, и они, безусловно, оснащаются системами слежения за солнцем. Сфокусированное в линию излучение, нагревает теплоноситель почти до 400 градусов, он проходит через теплообменники, вырабатывая пар, который и вращает турбину генератора.

Справедливости ради стоит отметить, что на месте трубы может быть расположен и фотоэлемент. Однако, несмотря на то, что с фотоэлементами, размеры концентраторов могут быть меньшими, это чревато уменьшением КПД и проблемой перегрева, для решения которой требуется разработка качественной системы охлаждения.

В пустыне штата Калифорния в 80-е было сооружено 9 электростанций на параболоцилиндрических концентраторах, суммарной мощностью 354 МВт. Затем эта же компания (Luz International) возвела еще и гибридную станцию SEGS I в Деггетте, мощностью 13,8 МВт, которая включала в себя дополнительно печи на природном газе. В общем, по состоянию на 1990 год, компанией было построено гибридных электростанций на суммарную мощность 80 МВт.

Развитие солнечной генерации на параболоцилиндрических электростанциях ведется в Марокко, Мексике, Алжире и других развивающихся странах при финансировании Всемирного банка.

Специалисты в итоге заключают, что сегодня параболоцилиндрические электростанции уступают как по рентабельности, так и по эффективности солнечным электростанциям башенного и тарельчатого типа.


– это, похожие на спутниковые тарелки, параболические зеркала, которыми солнечные лучи фокусируются на приемник, расположенный в фокусе каждой такой тарелки. При этом температура теплоносителя при данной технологии нагрева достигает 1000 градусов. Жидкий теплоноситель сразу подается к генератору или двигателю, который совмещен с приемником. Здесь используются, например, двигатели Стирлинга и Брайтона, что позволяет значительно повысить производительность таких систем, поскольку оптическая эффективность высока, а начальные затраты невысоки.

Мировым рекордом по эффективности гелиоустановки параболического тарельчатого типа является 29% КПД, достигнутый при преобразовании тепловой энергии в электрическую, на тарельчатой установке, совмещенной с двигателем Стирлинга на Ранчо Мираж.

Благодаря модульному проектированию, солнечные системы тарельчатого типа очень перспективны, они позволяют легко добиваться требуемых уровней мощности как для гибридных потребителей, подключенных к коммунальным электросетям, так и для автономных. Примером может служить проект «STEP», состоящий из 114 зеркал параболической формы, имеющих диаметр 7 метров, расположенный в штате Джорджия.

Система производит пар среднего, низкого и высокого давления. Пар низкого давления подается в систему кондиционирования трикотажной фабрики, пар среднего давления – для самого трикотажного производства, а пар высокого давления – непосредственно для генерации электричества.

Безусловно, тарельчатые солнечные концентраторы, объединенные с двигателем Стирлинга, интересуют владельцев крупных энергетических компаний. Так корпорация "Science Applications International Corporation", в сотрудничестве с тройкой энергетических компаний, разрабатывает систему с использованием двигателя Стирлинга и параболических зеркал, которая сможет производить 25 кВт электроэнергии.

В солнечных электростанциях башенного типа с центральным приемником, солнечное излучение фокусируется на приемник, который расположен в верхней части башни . Вокруг башни в большом количестве расставлены отражатели-гелиостаты . Гелиостаты снабжены двуосной системе слежения за солнцем, благодаря которой они всегда повернуты так, что лучи неподвижно сконцентрированы на теплоприемнике.

Приемник поглощает тепловую энергию, которая потом вращает турбину генератора.

Жидкий теплоноситель циркулируя в приемнике, передает пар тепловому аккумулятору. Обычно работает водяной пар с температурой 550 градусов, воздух и другое газообразное вещество с температурой до 1000 градусов, органические жидкости обладающие низкой температурой кипения – ниже 100 градусов, а также жидкий металл – до 800 градусов.

В зависимости от назначения станции, пар может вращать турбину для выработки электроэнергии, или непосредственно использоваться на каком–нибудь производстве. Температура в приемнике варьируется в диапазоне от 538 до 1482 градусов.

Башенная электростанция "Solar One" в Южной Калифорнии, одна из первых станций такого типа, изначально производила электроэнергию посредством водно-паровой системы, выдавая 10 МВт. Затем она претерпела модернизацию, и усовершенствованный приемник, работающий теперь на расплавленных солях и теплоаккумулирующая система стали значительно эффективней.

Это привело к тому, что башенные электростанции с теплоаккумулятором ознаменовали прорыв в технологиях солнечных концентраторов: электроэнергия в такой электростанции может производиться по мере надобности, так как теплоаккумулирующая система может хранить тепло до 13 часов.

Технология расплавленной соли дает возможность сохранять солнечное тепло при температуре 550 градусов, и электроэнергия теперь может производиться в любое время суток и при любой погоде. Башенная станция "Solar Two" мощностью 10 МВт, стала прототипом промышленных электростанций такого типа. В перспективе – строительство промышленных станций мощностями от 30 до 200 МВт для крупных промышленных предприятий.

Перспективы открываются колоссальные, однако развитие тормозится из-за потребности в больших площадях, и немалой стоимости возведения башенных станций промышленных масштабов. Например, для того, чтобы разместить 100 мегаваттную башенную станцию, нужно 200 га, в то время как для атомной электростанции могущей производить 1000 мегаватт электроэнергии, нужно всего 50 га. Параболоцилиндрические станции (модульного типа) на небольшие мощности, в свою очередь, рентабельней башенных.

Таким образом, башенные и параболоцилиндрические концентраторы подходят для электростанций мощностью от 30 МВт до 200МВт, которые соединены с сетью. Модульные тарельчатые концентраторы подойдут для автономного электроснабжения сетей, которым требуется всего несколько мегаватт. Как башенные, так и тарельчатые системы дороги в производстве, однако дают весьма высокий КПД.

Как видим, параболоцилиндрические концентраторы занимают оптимальное положение в качестве наиболее перспективной из технологий солнечных концентраторов на ближайшие годы.

Основной задачей солнечного коллектора является преобразование полученной от солнца энергии в электричество. Принцип работы и конструкция оборудования несложные, поэтому технически сделать его легко. Как правило, полученную энергию используют для обогрева зданий. Изготовление солнечного коллектора для отопления дома своими руками необходимо начинать с подбора всех комплектующих.

    Показать всё

    Конструкция и принцип работы

    Отопление дома с помощью преобразования солнечной энергии в электрическую используется, как правило, в качестве дополнительного источника тепла, а не основного. С другой стороны, если установить конструкцию большой мощности, а все приборы в доме переоборудовать под электричество, тогда можно обойтись только солнечным коллектором.

    Но стоит помнить, что отопление с помощью солнечных коллекторов без дополнительных источников тепла возможно только в южных регионах. При этом панелей должно быть достаточно много. Их необходимо располагать таким образом, чтобы на них не падала тень (например, от деревьев). Размещать панели следует лицевой стороной в направлении, максимально освещаемом солнцем на протяжении всего дня.

    Концентраторы солнечной энергии

    Хоть сегодня существует много разновидностей таких устройств, принцип работы у всех одинаковый. Любая схема забирает солнечную энергию и передаёт её потребителю, представляя собой контур с последовательным расположением приборов. Комплектующими, производящими электроэнергию, являются солнечные батареи или коллекторы.

    Коллектор состоит из трубок, которые последовательно соединены со входным и выходным отверстием. Также они могут располагаться в виде змеевика. Внутри трубок находится техническая вода или смесь воды и антифриза. Иногда они наполняются просто воздушным потоком. Циркуляция осуществляется благодаря физическим явлениям, таким как испарение, изменение агрегатного состояния, давление и плотность.

    Абсорберы выполняют функцию сбора энергии солнца. Они имеют вид сплошной металлической пластины чёрного цвета либо конструкции из множества пластин, соединённых между собой трубками.

    Для изготовления крышки корпуса используют материалы с высокой пропускной способностью света. Зачастую это либо оргстекло, либо закалённые виды обычного стекла. Иногда используются полимерные материалы, но изготовление коллекторов из пластика не рекомендуется. Связано это с его большим расширением от нагревания солнцем. В результате может произойти разгерметизация корпуса.

    Если система будет эксплуатироваться только осенью и весной, то в качестве теплоносителя можно использовать воду. Но в зимнее время её необходимо заменить на смесь антифриза и воды . В классических конструкциях роль теплоносителя играет воздух, который движется по каналам. Их можно сделать из обычного профлиста.

    Опыт эксплуатации солнечной батареи изготовленной самостоятельно (солнечная батарея часть 3).

    Если коллектор необходимо устанавливать для обогрева небольшого здания, которое не подключено к автономной системе отопления частного дома или централизованным сетям, то подойдёт простая система с одним контуром и нагревательным элементом в её начале. Схема простая, но целесообразность её установки оспаривается, так как работать она будет только солнечным летом. Однако для её функционирования не потребуются циркуляционные насосы и дополнительные нагреватели.

    При двух контурах всё гораздо сложнее, но количество дней, когда станет активно вырабатываться электроэнергия, увеличивается в несколько раз. При этом коллектор будет обрабатывать только один контур. Большая часть нагрузки возлагается на одно устройство, которое работает на электроэнергии или другом виде топлива.

    Хоть производительность устройства напрямую зависит от количества солнечных дней в году, а цена на него завышена, оно всё равно пользуется большой популярностью среди населения. Не менее распространённым является производство солнечных теплообменников своими руками.

    Классификация по температурным показателям

    Гелиосистемы классифицируются по различным критериям. Но в приборах, которые можно изготовить самостоятельно, следует обратить внимание на вид теплоносителя. Такие системы можно разделить на два типа:

    • использование различных жидкостей;
    • воздушные конструкции.

    Первые применяются чаще всего. Они более производительные и позволяют напрямую подключить коллектор к отопительной системе. Также распространена классификация по температуре, в пределах которой может работать устройство:

    Солнечная батарея своими руками Part11

    Последний вид гелиосистем работает благодаря очень сложному принципу передачи солнечной энергии. Оборудованию требуется много места. Если разместить его на загородной даче, тогда оно займет преобладающую часть участка. Для производства энергии понадобится специальное оборудование, поэтому сделать такую солнечную систему самостоятельно будет практически невозможно.


    Изготовление своими руками

    Процесс изготовления солнечного обогревателя своими руками довольно увлекательный, а готовая конструкция принесёт много пользы хозяину. Благодаря такому устройству можно решить проблему обогрева помещений, нагрева воды и других важных хозяйственных задач.

    Материалы для самостоятельного производства

    В качестве примера можно привести процесс создания отопительного устройства, которое будет поставлять нагретую воду в систему. Самым дешёвым вариантом производства солнечного коллектора является использование в качестве основных материалов деревянного бруска и фанеры, а также плит ДСП. Как альтернативу можно использовать алюминиевые профили и металлические листы, но они обойдутся дороже.

    Все материалы должны быть влагоустойчивыми, то есть отвечать требованиям использования на открытом воздухе. Качественно изготовленный и установленный солнечный коллектор может служить от 20 до 30 лет. В связи с этим материалы должны иметь необходимые характеристики эксплуатации для применения на протяжении всего срока. Если корпус создан из дерева или плит ДСП, тогда для продления срока службы его пропитывают водно-полимерными эмульсиями и лаком.

    Обзор: Самодельная солнечная панель (батарея).

    Необходимые материалы для изготовления можно либо купить на рынке в свободном доступе, либо сделать конструкцию из подручных материалов, которые найдутся в любом хозяйстве. Поэтому основное, на что нужно обращать внимание, - это цена материалов и комплектующих.

    Обустройство теплоизоляции

    Чтобы уменьшить потери тепла, на дно короба укладывается изоляционный материал. Для него можно использовать пенопласт, минеральную вату и т. п. Современная промышленность предоставляет большой выбор различных утеплителей. Например, хорошим вариантом станет использование фольги. Она не только предотвратит потерю тепла, но и будет отражать солнечные лучи, а значит, увеличит нагрев теплоносителя.

    В случае использования пенопласта или полистирола для утепления можно вырезать для трубок канавки и монтировать их таким образом. Как правило, абсорбер фиксируется к днищу корпуса и укладывается по изоляционному материалу.

    Теплоприемник коллектора

    Теплоприемником солнечного коллектора выступает абсорбирующий элемент. Он представляет собой систему, состоящую из трубок, по которым движется теплоноситель, и других деталей, производящихся обычно из листов меди.

    Лучшим материалом для трубчатой части является медь. Но домашние умельцы изобрели более дешёвый вариант - полипропиленовые шланги , которые скручиваются в спиральную форму. Для подсоединения к системе на входе и выходе применяются фитинги.

    Подручные материалы и средства разрешается использовать различные, то есть практически любые, которые есть в хозяйстве. Тепловой коллектор своими руками можно изготовить из старого холодильника, полипропиленовых и полиэтиленовых труб, панельных радиаторов из стали и других подручных средств. Важным фактором при выборе теплообменника является теплопроводность материала, из которого он изготовлен.


    Идеальным вариантом для создания самодельного водяного коллектора является медь. Она имеет самую высокую теплопроводность. Но использование медных трубок вместо полипропиленовых не означает, что устройство будет выдавать намного больше тёплой воды. На равных условиях медные трубки будут на 15-25% эффективнее, чем установка полипропиленовых аналогов. Поэтому применение пластика тоже является целесообразным, к тому же он намного дешевле меди.

    При использовании меди или полипропилена необходимо делать все соединения (резьбовые и сварные) герметичными. Возможное расположение труб - параллельное или в виде змеевика. Верх основной конструкции с трубками закрывается стеклом. При форме в виде змеевика уменьшается количество соединений и, соответственно, возможное образование утечек, а также обеспечивается равномерное движение теплоносителя по трубкам.

    Для покрытия короба можно использовать не только стекло. В этих целях применяют полупрозрачные, матовые или рифлёные материалы. Использовать можно акриловые современные аналоги или монолитные поликарбонаты.

    При изготовлении классического варианта можно использовать закалённое стекло или оргстекло, поликарбонатные материалы и т. п. Хорошей альтернативой станет применение полиэтилена.

    Важно учитывать, что использование аналогов (рифлёных и матовых поверхностей) способствует уменьшению пропускной способности света. В заводских моделях применяют для этого специальное солярное стекло. Оно имеет немного железа в своём составе, что обеспечивает низкую теплопотерю.

    Накопительный бак установки

    Чтобы создать накопительный бак, можно использовать любую ёмкость объёмом от 20 до 40 литров. Также применяется схема с несколькими резервуарами, которые соединяются между собой в одну систему. Бак желательно утеплить, в противном случае подогретая вода быстро остынет.

    Если разобраться, то аккумуляции в этой системе нет, а нагретый теплоноситель необходимо использовать сразу же. Поэтому накопительная ёмкость используется для:

    • поддержания давления в системе;
    • замены аванкамеры;
    • распределения нагретой воды.

    Разумеется, что солнечный коллектор, сделанный своими руками в домашних условиях, не обеспечит качество и эффективность, характерные для моделей заводского производства. Используя только подручные материалы, о высоком коэффициенте полезного действия не стоит и говорить. В промышленных образцах такие показатели в несколько раз выше. Однако и финансовые затраты станут здесь намного меньше, так как используются подручные средства. Сделанная своими руками солнечная установка значительно повысит уровень комфорта в загородном доме, а также уменьшит расходы на другие энергоресурсы.

Еще со времен начала нашего тысячелетия, возможность и способы использования энергии солнечных лучей заботили самые выдающиеся умы человечества. Уже тогда люди прекрасно понимали, что небесное светило по имени Солнце, является источником излучения неисчерпаемой энергии. Однако как «приручить» и использовать его в своих интересах в то далекое время не выяснил никто. Согласно дошедшим до наших дней источникам, писатели времен античности Плутарх и Полибий, указали, что человеком, который первым собственноручно написал чертежи и собрал работающее изобретение, был Архимед.


Это было устройство, которое посредством неких приспособлений на основе оптики концентрировало излучение солнечной радиации в один мощный поток. Впоследствии изобретение было применено для уничтожения имперского флота римлян, прибывшего с захватническими целями.

По своей сути, изобретение мудрого греческого инженера, которое он собрал своими руками – это первый созданный на планете Земля параболический концентратор на основе солнечной энергии, принцип действия которого состоял в концентрации излучения в одном небольшом пучке.

В районе воздействия такого пучка уровень температуры мог достигать от 300 до 400 градусов Цельсия. Такой энергии, сконцентрированной на корпусе любого из кораблей римского военного флота (который в то время полностью состоял из дерева), было бы достаточно для возгорания морского судна. Сегодня можно только делать предположения насчет того, какое конкретно изобретение дал миру Архимед, но исходя из современных знаний и представлений о технологиях и достижениях в данной области энергетики, было только два возможных варианта.

Начнем с того, что само наименование, которое получило изобретение – это солнечный концентратор, такое название говорит за себя само.


Линза, выпуклая с обеих сторон – это пример простейшего концентратора

Это устройство, которое путем улавливания солнечного излучения определенным изгибом поверхности концентрирует лучи в одной точке, добиваясь кратных показателей увеличения энергии. Все мы помним из своего юного прошлого обычную линзу, выпуклую с обеих сторон – это пример простейшего концентратора. В солнечную погоду, регулируя своими руками угол падения излучения солнца, можно было выжечь на деревянной поверхности или на бумаге все, что приходило в голову, любую фигуру или надпись.

Такая линза принадлежит к группе рефракторных концентраторов. В дополнение к выпуклым линзам, к этой же группе концентраторов относят и линзы Френеля, представляющие собой призму. Длиннофокусные концентраторы собираются с использованием так называемых линейных линз. Такие концентраторы очень недорогие и их легко собрать своими руками, не прибегая к помощи квалифицированного инженера (если вы решите это сделать, в сети закачано достаточное количество видео, запрос – homemade solar reflector). Однако в практике они используются совсем нечасто, одна из причин этого – их довольно крупные габариты. Такие концентраторы, в том числе и самодельные, применяют в тех местах, где сделать это позволяют площади и занимаемое ими пространство, не являющимися критичным для его обладателя.


Такой недостаток отсутствует у призменного концентратора солнечного излучения. Кроме того, это оборудование может частично концентрировать и часть диффузионного излучения, тем самым в значительной мере увеличивая мощность создаваемого энергетического лучевого потока. Трехгранная призма, с применением которой строится данный механизм, одновременно осуществляет функции и инициатора излучения точки концентрации луча, и приема этого излучения. В дополнение ко всему задняя грань многогранника отражает поток энергии принятого передней гранью солнечного излучения, а боковая грань отвечает за выдачу излучения. В принципе работы этого оборудования заложен механизм максимального отражающего воздействия на солнечные лучи до момента их попадания на боковую грань.

Рефлекторный солнечный концентратор solar в сравнении с рефракторными функционирует путем объединения энергии пучка отраженной солнечной радиации. Исходя из формы конструкции, такие концентраторы делятся на подвиды и называются параболоцилиндрическими и параболическими. Если разбираться в показателях коэффициента полезного действия этих устройств, то самым мощным источником энергии будет параболический концентратор, он выдает до 10 тысяч единиц концентрации.


Параболический концентратор выдает до 10 тысяч единиц концентрации

Однако для создания энергетических солнечных систем теплоснабжения (особенно для отопления зимой) в большей степени прибегают к установке параболоцилиндрических или плоских устройств, к тому же такую систему легко монтировать и своими руками.

Солнечные концентраторы их практическое использование и применение

В принципе, главная функция солнечных концентраторов любой конструкции – это сбор поступающего от солнца излучения и его сосредоточение в одной точке. Определить область применения данной энергии – выбор хозяина этого оборудования. Используя совершенно бесплатную и возобновляемую энергию, можно разогревать воду для хозяйственных нужд и нужд гигиены. Количество нагреваемой воды будет зависеть только от размеров тарелки и общей конструкции концентратора. Параболические концентраторы небольших размеров могут быть использованы в качестве печи для приготовления продуктов, которая будет работать исключительно на сконцентрированной солнечной радиации.

Зимой концентраторы можно применить в качестве дополнительного источника солнечного света для фотоэлектрических солнечных батарей, тем самым повышая их выходную мощность в условиях недостатка солнечного излучения.


Параболические концентраторы могут быть использованы в качестве печи для приготовления продуктов

На самом деле применение в целях повышения эффективности кристаллических батарей – довольно неплохая идея, учитывая невысокую стоимость концентраторов. Тем более что патент на такую конструкцию вам не понадобится. Получится своеобразная система электроснабжения homemade solar.

Возможно также применение устройства как автономного источника энергии для двигателя Стирлинга (патент на такой двигатель его изобретателем был получен уже очень давно). Концентраторы группы параболических создают в точке сбора солнечных лучей температуру в диапазоне от 300 до 400 °C.

Если в область концентрации лучей, идущих от сравнительно небольшой тарелки, поставить металлическую подставку для посуды и поместить на нее чайник, без проблем можно вскипятить воду без использования электричества. Разместив нагреватель в точке концентрации энергии, вы довольно быстро разогреете и проточную воду в достаточно больших объемах для дальнейшего использования в хозяйственных нуждах. Сможете полить огород, помыть посуду, принять душ.

Разместив в фокусе луча правильно подобранный по мощности двигатель Стирлинга, вы получите небольшую тепловую и электрическую станцию.


Двигатели Стирлинга созданы для того, чтобы работать в паре с солнечным концентратором

К примеру, одна компания под названием Qnergy разработала и зарегистрировала патент, запустив в серийное производство двигатели Стирлинга QB-3500, которые созданы специально для того, чтобы работать в паре с солнечным концентратором solar reflector. По своей сути такое устройство можно считать генератором электрического тока, где основную функцию выполняет двигатель Стирлинга. Отметим, что такая система также требует наличия аккумуляторных батарей для накапливания полученной энергии. Такая электростанция осуществляет выработку электрического тока мощностью 3500 Вт. Инвертор на выходе выдает стандартное напряжение в 220 вольт, частотой 50 Гц. Такой мощности электрического тока вам хватит для полного обеспечения нужд дома, в котором проживает семья из четырех человек. Эффективно применение подобных батарей и для дачного дома. Установленный на вашем участке концентратор будет иметь внешний вид спутниковой антенны, не нарушая внешнюю эстетику.

Кстати, одним из производителей был зарегистрирован патент устройства, где, применяя принцип работы двигателя Стирлинга, можно создать систему, которая в своей основе будет эксплуатировать поступательно-возвратное или вращательное движение (не требует установки аккумуляторных батарей). Как пример такой системы можно привести водяной насос для колодца или других целей.


Параболический концентратор нужно систематически поворачивать за лучами солнца по мере вращения земли в течение суток

Главный недостаток, которым обладает параболический концентратор – это то, что за ним надо систематически следить, поворачивая его за лучами солнца по мере вращения земли в течение суток. Там, где концентраторы применяются на крупных тепловых станциях в промышленных масштабах, к группе батарей дополнительно монтируют специальные системы слежения за движением солнца. Такие системы поворачивают зеркала вслед за его перемещением. Тем самым гарантируется постоянный и эффективный прием поступающей солнечной радиации под самым эффективным углом. Но применение такого оборудования в частном порядке, скорее всего, будет не очень целесообразным, ввиду того, что затраты на приобретение будут значительно большими, чем стоимость стандартного рефлектора на треножном креплении.

Как сделать концентратор солнечного излучения самому?

Для изучения данного вопроса можно обратиться к опыту изобретателя из Владивостока Юрия Рылова, имеющего патент на созданную им отопительную систему. Уже на протяжении долгого времени его большой загородный дом, общая площадь которого составляет более 400 квадратных метров, полностью обогревается на основе системы батарей, где теплоноситель разогревается солнечным концентратором.


Концентратор Юрия Рылова работает более чем в два раза эффективней солнечных батарей

Всю систему, на которую он в результате получил патент, умелец разработал сам. Его концентратор работает более чем в два раза эффективней солнечных батарей.

Для этого есть ряд причин, одна из них – это система концентраторов, на которую изобретатель получил патент, она аккумулирует энергию практически всего поступающего спектра солнечной радиации. Следующая причина в том, что система была дополнена механизмом слежения за солнцем (учитывая область применения оборудования в данном случае, это может быть оправданным).

Однако с внедрением системы в массовое производство возникли проблемы. Под созданное устройство уже более чем пять лет назад изобретателем был получен патент Российской Федерации, но до настоящего времени оно не получило широкого промышленного распространения. Это довольно странно, так как со слов Рылова, его концентратор позволяет обогревать подъезд дома в пять этажей, обеспечивая его горячей водой. За восемь часов работы оборудование разогревает кубометр воды. За это же время концентратор выдаст 80 кВт электроэнергии. В дополнение изобретатель столкнулся с проблемой защиты интеллектуальной собственности на территории России. Заниматься закреплением права собственности на свое устройство в тех странах, где возможно наладить такое производство, надо самостоятельно, чиновники не помогают получить патент за границей.


Самый легкий способ для сборки собственного самодельного концентратора – это сделать его на основе старой спутниковой тарелки

Итак, самый легкий способ для сборки собственного самодельного концентратора – это сделать его на основе старой спутниковой тарелки. До начала сборки механизма определитесь с целями его применения, после чего выберите место установки концентратора. Хорошенько вычистите антенну и на рабочую сторону прикрепите отражающую пленку.

Для ровной укладки пленки и во избежание возможного появления складок, разрежьте пленку на полоски, размером не больше пятидесяти миллиметров. Если вы надумали применять концентратор в роли печи, использующей солнечное излучение, будет лучше, когда в центральной части тарелки вы проделаете отверстие около 70 миллиметров диаметром. Через него пропустите крепление емкости с пищей. Приспособление гарантирует фиксированное положение тары с разогреваемым объектом во время разворотов устройства за солнцем.

Если в вашем распоряжении только тарелка с малым диаметром, здесь стоит нарезать ленту полосками по 100 миллиметров. Каждую полоску необходимо клеить отдельно, внимательно и аккуратно выравнивая стыки.


Когда вы закончите оклейку отражающего элемента, определите, где находится точка концентрации лучей. Это надо сделать потому, что форма тарелки зачастую не гарантирует совпадения точки фокуса и места расположения головки приема сигнала.

Самодельная печь концентратор на солнечном излучении

Для начала стоит выявить место концентрации, для этого оденьте солнцезащитные очки. Возьмите деревянную доску и плотные варежки. Направьте отражатель в сторону солнца и сфокусируйте пойманные лучи на доске, далее регулируйте расстояние пока не получите максимально эффективный, концентрированный пучок энергии, делайте это до тех пор, пока не получите его самый малый размер. Одетые вами варежки предохранят кожу рук от солнечного ожога, если вы случайно подставите руки в зону фокуса лучей. После того как вы определите точку концентрации, вам останется только зафиксировать конструкцию и закончить ее монтаж в оптимальное место. Как говорят в кругах изобретателей: «Остается только получить патент». Пользуйтесь результатами своего труда, получая неиссякаемый и бесплатный источник энергии.


Двигатель Стирлинга можно собрать, используя подручные, распространенные материалы

Существует множество вариантов изготовления концентраторов на основе солнечного излучения. Таким же образом вы сможете сами, используя подручные, распространенные материалы, собрать двигатель Стирлинга (это действительно возможно, хоть, на первый взгляд, и кажется недостижимым), а уж использовать возможности этого двигателя для самых разных целей вы сможете на протяжении длительного времени. Все ограничения зависят только от вашего терпения и наличия фантазии.

Проблема использования солнечной энергии с древних времен занимала лучшие умы человечества. Было понятно, что Солнце – это мощнейший источник даровой энергии, но как эту энергию использовать, не понимал никто. Если верить античным писателям Плутарху и Полибию, то первым человеком, практически использовавшим солнечную энергию, был Архимед, который с помощью изобретенных им неких оптических устройств сумел собрать солнечные лучи в мощный пучок и сжечь римский флот.

В сущности, устройство, изобретенное великим греком, представляло собой первый концентратор солнечного излучения, который собрал солнечные лучи в один энергетический пучок. И в фокусе этого концентратора температура могла достигать 300°С - 400°С, что вполне достаточно для того, чтобы воспламенить деревянные суда римского флота. Можно только догадываться, какое именно устройство изобрел Архимед, хотя, по современным представлениям, вариантов у него было всего два.

Уже само наименование устройства – солнечный концентратор – говорит само за себя. Этот прибор принимает солнечные лучи и собирает их в единый энергетический пучок. Самый простой концентратор всем знаком из детства. Это обычная двояковыпуклая линза, которой можно было выжигать различные фигурки, надписи, даже целые картинки, когда солнечные лучи собирались такой линзой в маленькую точку на деревянной доске, листе бумаги.

Эта линза относится к так называемым рефракторным концентраторам. Кроме выпуклых линз к этому классу концентраторов относятся также линзы Френеля, призмы. Длиннофокусные концентраторы, построенные на основе линейных линз Френеля, несмотря на свою дешевизну, практически используются очень мало, так как обладают большими размерами. Их применение оправдано там, где габариты концентратора не являются критичными.

Рефракторный солнечный концентратор

Этого недостатка лишен призменный концентратор солнечного излучения. Более того, такое устройство способно концентрировать также и часть диффузного излучения, что значительно повышает мощность светового пучка. Трехгранная призма, на основе которой построен такой концентратор, является и приемником излучения и источником энергетического пучка. При этом передняя грань призмы принимает излучение, задняя грань – отражает, а из боковой грани уже выходит излучение. В основу работы такого устройства заложен принцип полного внутреннего отражения лучей до того, как они попадут на боковую грань призмы.

В отличие от рефракторных, рефлекторные концентраторы работают по принципу сбора в энергетический пучок отраженного солнечного света. По своей конструкции они подразделяются на плоские, параболические и параболоцилиндрические концентраторы. Если говорить об эффективности каждого из этих типов, то наивысшую степень концентрации – до 10000 – дают параболические концентраторы. Но для построения систем солнечного теплоснабжения используются в основном плоские или параболоцилиндрические системы.


Параболические (рефлекторные) солнечные концентраторы

Практическое применение солнечных концентраторов

Собственно, основная задача любого солнечного концентратора – собрать излучение солнца в единый энергетический пучок. А уж воспользоваться этой энергией можно различными путями. Можно даровой энергией нагревать воду, причем, количество нагретой воды будет определяться размерами и конструкцией концентратора. Небольшие параболические устройства можно использовать в качестве солнечной печи для приготовления пищи.


Параболический концентратор в качестве солнечной печи

Можно использовать их для дополнительного освещения солнечных батарей, чтобы повысить выходную мощность. А можно использовать в качестве внешнего источника тепла для двигателей Стирлинга. Параболический концентратор обеспечивает в фокусе температуру порядка 300°С – 400°С. Если в фокусе такого сравнительно небольшого зеркала поместить, например, подставку для чайника, сковороды, то получится солнечная печь, на которой очень быстро можно приготовить пищу, вскипятить воду. Помещенный в фокусе нагреватель с теплоносителем позволит достаточно быстро нагревать даже проточную воду, которую затем можно использовать в хозяйственных целях, например, для душа, мытья посуды.


Простейшая схем нагрева воды солнечным концентратором

Если в фокусе параболического зеркала поместить подходящий по мощности двигатель Стирлинга, то можно получить небольшую тепловую электростанцию. Например, фирма Qnergy разработала и пустила в серию двигатели Стирлинга QB-3500, которые предназначены для работы с солнечными концентраторами. В сущности, правильнее было бы их назвать генераторами электрического тока на базе двигателей Стирлинга. Этот агрегат вырабатывает электрический ток мощностью 3500 ватт. На выходе инвертора – стандартное напряжение 220 вольт 50 герц. Этого вполне достаточно, чтобы обеспечить электричеством дом для семьи из 4 человек, дачу.

Кстати, используя принцип работы двигателей Стирлинга, многие умельцы своими руками делают устройства, в которых используется вращательное или возвратно-поступательное движение. Например, водяные насосы для дачи.

Основной недостаток параболического концентратора заключается в том, что он должен быть постоянно ориентирован на солнце. В промышленных гелиевых установках применяются специальные системы слежения, которые поворачивают зеркала или рефракторы вслед за движением солнца, обеспечивая тем самым прием и концентрацию максимального количества солнечной энергии. Для индивидуального использования вряд ли будет целесообразным применять подобные следящие устройства, так как их стоимость может значительно превышать стоимость простого рефлектора на обычной треноге.

Как сделать самому солнечный концентратор

Самый простой способ для изготовления самодельного солнечного концентратора – это использовать старую тарелку от спутниковой антенны. Вначале нужно определиться, для каких целей будет использоваться этот концентратор, а затем, исходя из этого, выбрать место установки и подготовить соответствующим образом основание и крепления. Тщательно вымыть антенну, высушить, на приемную сторону тарелки наклеить зеркальную пленку.

Для того, чтобы пленка легла ровно, без морщин и складок, ее следует разрезать на полоски шириной не более 3 – 5 сантиметров. Если предполагается использовать концентратор в качестве солнечной печи, то рекомендуется в центре тарелки вырезать отверстие диаметром примерно в 5 – 7 сантиметров. Через это отверстие будет пропущен кронштейн с подставкой для посуды (конфоркой). Это обеспечит неподвижность емкости с приготовляемой едой при повороте рефлектора на солнце.

Если тарелка небольшого диаметра, то рекомендуется еще и полоски разрезать на кусочки длиной примерно по 10 см. Наклеивать каждый кусочек отдельно, тщательно подгоняя стыки. Когда отражатель будет готов, его следует установить на опору. После этого нужно будет определить точку фокуса, так как точка оптического фокуса у тарелки спутниковой антенны не всегда совпадает с позицией приемной головки.


Самодельный солнечный концентратор – печь

Чтобы определить точку фокуса, необходимо вооружиться темными очками, деревянной дощечкой и толстыми перчатками. Затем нужно направить зеркало прямо на солнце, поймать на дощечку солнечный зайчик и, приближая или удаляя дощечку относительно зеркала, найти точку, где этот зайчик будет иметь минимальные размеры – небольшую точку. Перчатки нужны для того, чтобы уберечь руки от ожога, если они случайно попадут в зону действия луча. Ну, а когда точка фокуса будет найдена, ее останется только зафиксировать и монтировать необходимое оборудование.

Вариантов самостоятельного изготовления солнечных концентратором существует множество. Точно так же самому из подручных материалов можно смастерить и двигатель Стирлинга. А уж использовать этот двигатель можно для самых различных целей. На сколько хватит фантазии, желания и терпения.