» » Инжекционные газовые горелки низкого и среднего давления. Инжекционные горелки низкого давления Схема инжекторной горелки

Инжекционные газовые горелки низкого и среднего давления. Инжекционные горелки низкого давления Схема инжекторной горелки

Инжекционная газовая горелка низкого давления по принципу организации смешения газа с воздухом относится к газовым горелкам с частичным предварительным смешением.

Струя газа в горелке под давлением выходит из сопла (1) с большой скоростью и за счет своей энергии захватывает в конфузоре (2) воздух, увлекая его внутрь горелки. Смешение газа с воздухом происходит в смесителе, состоящем из конфузора (2), горловины (3) и диффузора (4). Разрежение, создаваемое инжектором, возрастает с увеличением давления газа в горелке, и при этом изменяется количество подсасываемого первичного воздуха (от 30 до 70%), необходимого для полного сгорания газа. Количество воздуха, поступающего в газовую горелку, можно изменять при помощи регулятора (6) первичного воздуха, представляющего собой шайбу, вращающуюся на резьбе. При вращении регулятора изменяется расстояние между шайбой и конфузором, и таким образом регулируется подача воздуха.

Инжекционная газовая горелка низкого давления:
1 - сопло; 2 - конфузор; 3 - горловина; 4 - диффузор; 5 - огневой насадок; 6 - регулятор первичного воздуха.

Для обеспечения полного сгорания топлива в газовой горелке часть воздуха поступает за счет разрежения в топке. Регулирование расхода вторичного воздуха производится путем изменения разрежения в топке.

Инжекционные горелки низкого давления выполняются огневыми насадками (5) разной формы.

Инжекционные газовые горелки обладают свойством саморегулирования, т.е. возможностью обеспечения постоянства соотношения между количеством поступающего в горелку газа и количеством подсасываемого ими первичного воздуха. При этом, если подача воздуха в горелку при помощи шайбы отрегулирована по цвету пламени или показанию газоанализатора на полное сгорание газа и газовая горелка работает спокойно без шума, то дальнейшее изменение ее нагрузки можно проводить, увеличивая или уменьшая только расход газа, не меняя положения воздушной шайбы.

Изменяя режим работы газовой горелки, необходимо следить за устойчивостью ее пламени, так как на характер горения газа влияют не только количество подаваемого в нее первичного воздуха, но и количество вторичного воздуха, поступающего в топку.

Инжекционная горелка среднего давления ИГК конструкции Ф.Ф.Казанцева относится к горелкам с полным предварительным смешением и устойчиво работает при давлении газа 2... 60 кПа (200... 6 000 мм вод. ст.).

Газ, поступающий в газовую горелку через газовое сопло (4), инжектирует воздух в необходимом для сжигания количестве. В смесителе (2), состоящем из конфузора, горловины и диффузора, осуществляется полное перемешивание газа с воздухом.

Инжекционная горелка ИГК среднего давления конструкции Ф. Ф. Казанцева:
1 - пластинчатый стабилизатор горения; 2 - смеситель; 3 - регулятор подачи воздуха; 4 - газовое сопло; 5 - гляделка.

В конце диффузора в газовой горелке установлен пластинчатый стабилизатор (1), который обеспечивает устойчивую работу горелок без отрыва и проскока пламени в широком диапазоне нагрузок. Стабилизатор горения состоит из тонких стальных пластин, расположенных на расстоянии примерно 1,5 мм одна от другой. Пластины стабилизатора стянуты между собой стальными стержнями, которые на пути движения газовоздушной смеси создают зону обратных токов горячих продуктов горения, за счет теплоты которых происходит непрерывное поджигание газовоздушной смеси. Фронт пламени удерживается на определенном расстоянии от устья горелки.

Регулирование подачи воздуха производится с помощью регулятора (3). На внутренней его поверхности укреплен клеем шумопоглощающий материал. В регуляторе выполнено смотровое окно — гляделка (5) для наблюдения за целостностью стабилизатора.

К недостаткам инжекционных горелок относятся:

  • значительные габариты горелок по длине, особенно горелок увеличенной производительности (например, горелка ИГК-250-00 номинальной производительностью 135 м3/ч имеет длину 1 914 мм);
  • высокий уровень шума у инжекционных горелок среднего давления при истечении газовой струи и инжектировании воздуха;
  • зависимость поступления вторичного воздуха от разрежения в топке (для инжекционных горелок низкого давления), плохие условия смесеобразования в топке, приводящие к необходимости увеличения общего коэффициента избытка воздуха до 1,3...1,5 и даже выше для обеспечения полного сгорания топлива.

Газопламенные горелки предназначены для смешения горючего газа или паров горючих жидкостей с кислородом или воздухом и получения устойчивого высокотемпературного пламени. Различные конструкции газопламенных горелок можно классифицировать следующим образом:

а) по способу подачи горючего газа в смесительную камеру: инжекторные и безынжекторные;

б) по расходу горючего газа: микромощности (10-60 дм 3 /ч ацетилена), средней мощности (50-2800 дм 3 /ч ацетилена), большой мощности (2800-7000 дм 3 /ч ацетилена);

в) по назначению: универсальные (для сварки, пайки, наплавки, подогрева, закалки, поверхностной очистки и т. п.); специализированные (только сварка, подогрев, закалка, очистка поверхностей и т. д.);

г) по числу рабочего пламени: однопламенные, многопламенные;

д) по способу применения: для ручных процессов газопламенной обработки, для механизированных процессов.

Наибольшее применение находят инжекторные газопламенные горелки . В горелке этого типа горючая смесь образуется за счет инжектирования (подсоса) горючего газа кислородом, который проходит по центральному отверстию инжектора. Выходя из маленького отверстия инжектора в камеру смешения, кислород расширяется, теряя давление; происходит подсос ацетилена. Устройство такой горелки показано на рис. 41. Разрез инжекторного устройства приведен на рис. 42. Для нормальной работы инжекторной горелки давление поступающего в нее кислорода должно быть 2÷4 кгс/см 2 . Давление же ацетилена может быть значительно ниже - от 0,01 до 0,1 кгс/см 2 (или от 100 до 1000 мм вод. ст.).

Увеличить

Рис. 41. Устройство и принцип работы инжекторной сварочной горелки :

1 - кислородный ниппель, 2 - рукоятка, 3 - кислородная трубка, 4 - корпус, 5 - регулирующий кислородный вентиль, 6 - ниппель наконечника, 7 - мундштук ацетилено-кислородной горелки, 8 - мундштук пропан-бутан-кислородной горелки, 9 - штуцер, 10 - подогреватель, 11 - трубка горючей смеси, 12 - трубка смесительной камеры, 13 - инжектор, 14 - регулирующий вентиль горючего газа, 15 - трубка горючего газа, 16 - ниппель горючего газа; а - канал малого сечения, б - канал смесительной камеры, в - зазор между стенками смесительной камеры и корпусом инжектора, г - боковые отверстия в штуцере; I - сменный наконечник для ацетилено-кислородной горелки, II - сменный наконечник для пропан-бутан-кислородной горелки


Рис. 42. Разрез инжекторного устройства :

1 - смесительная камера, 2 - накидная гайка, 3 - корпус горелки, 4 - инжектор

В безынжекторных горелках (горелках равного давления) ацетилен и кислород поступают в смесительное устройство под одинаковыми давлениями в пределах 0,5÷1,0 кгс/см 2 . Обычно это горелки небольшой мощности, как, например, горелка Г1.

Для ряда процессов газопламенной обработки (нагрев, пайка, сварка пластмасс и т. п.), где не требуется высокой температуры пламени, применяют камерно-вихревые горелки, работающие на пропан-воздушной смеси. В таких горелках вместо мундштука имеется камера сгорания, в которую поступают пропан и воздух. Пропан подается по центральному каналу, а воздух - по многозаходной спирали, что вызывает вихреобразование и смешивание газовой смеси в камере сгорания.

Согласно ГОСТ 1077-69, универсальные однопламенные горелки для ацетилено-кислородной сварки, пайки и подогрева выпускаются четырех типов (табл. 15). Этим же стандартом установлено 12 номеров сменных наконечников с различным расходом ацетилена и кислорода (табл. 16).

15. Типы и основные параметры одноплеменных универсальных ацетилено-кислородных горелок (ГОСТ 1077-69).

Типы Наименование Расход, л/ч Давление на входе в горелку, кгс/см 2 Нормальная комплектовка горелки наконечниками номеров Принцип действия
ацетилена кислорода ацетилена кислорода
наим. наиб. наим. наиб. наим. наиб. наим. наиб.
Г1

Горелка микромощности

5 60 6 65 0,10 1,00 0,1 1,0 000, 00, 0 Безынжекторный
Г2

Горелка малой мощности

25 430 28 440 0,01 0,35 0,5 4,0 0, 1, 2, 3 Инжекторный
Г3

Горелка средней мощности

50 2800 55 3100 0,35 1,0 4,0 То же
Г4

Горелка большой мощности

2800 7000 3100 8000 0,35 1,20 2,0 4,0 8,9 »

16. Расход ацетилена и кислорода для различных номеров наконечников горелок (ГОСТ 1077-69)

Горелка любого типа снабжена рукояткой с запорно-регулировочными вентилями для кислорода и ацетилена и набором сменных наконечников. На маховичках вентилей нанесены: наименование газа (кислород или ацетилен), стрелки, указывающие направление вращения при открывании и закрывании вентилей, буквы О (открыто) и 3 (закрыто).

Накидная гайка и штуцер, служащие для присоединения к рукоятке ниппеля для ацетилена, должны иметь левую резьбу. Кислородный ниппель присоединяется накидной гайкой с правой резьбой.

Ниже приводится краткое описание некоторых марок горелок.

В инжекторных горелках подача горючего газа в сме­сительную камеру производится за счет подсоса его стру­ей кислорода, вытекающего с большой скоростью из от­верстия сопла. Этот процесс подсоса газа более низкого давления струей кислорода, которая подводится с более

высоким давлением, называется инжекцией. Горелки, в которых используется подобный принцип действия, на­зываются инжекторными.

Для нормальной работы инжекторных горелок требу­ется, чтобы давление ацетилена было значительно ниже, чем давление кислорода (0,001-0,12 МПа и 0,15-0,5 МПа соответственно).

На рис. 61 приведена схема устройства инжекторной горелки.

Горелка состоит из двух основных частей - ствола и наконечника. Ствол имеет кислородный ниппель 1 и аце­тиленовый ниппель 16 с трубками 3 и 15, рукоятку 2, корпус 4 с двумя вентилями - ацетиленовым 14 и кис­лородным 5.

Вентиля служат для пуска и прекращения подачи газа при гашении пламени, а также для регулировки расхода.

Наконечник горелки состоит из смесительной каме­ры 12, инжектора 13, трубки 11 с ниппелем наконечни­ка б и мундштука 7. Весь узел наконечника подсоеди­няется к корпусу ствола горелки специальной накид­ной гайкой.

Инжектор 13 (рис. 62) - это цилиндрическая деталь с центральным каналом для кислорода и периферийными радиально расположенными каналами для ацетилена. Центральный канал имеет очень маленький диаметр.

Рис. 62. Схема инжекторного устройства

Для нормальной инжекции необходим правильный вы* *

бор зазора между торцом инжектора и конусом смеси — , тельной камеры.

Разряжение за инжектором (подсасывающее ацетилен) достигается за счет высокой скорости кислородной струи (до S00 м/сек). Давление кислорода, который поступает через вентиль 5, составляет от 0,5 до 4 кгс/см2.

В смесительной камере ацетилен смешивается с кис­лородом и смесь поступает в канал мундштука. Смесь выходит из мундштука со скоростью 50-170 м/сек.

Нагрев наконечника горелки снижает инжекцию и уменьшает разряжение в камере инжекции, что умень­шает поступление ацетилена в горелку. Это, в свою оче — 1 редь, ведет к усилению окислительного действия свароч­ного пламени. Чтобы восстановить нормальный состав сва­рочного пламени, сварщик должен по мере нагревания наконечника увеличивать поступление ацетилена, откры­вая ацетиленовый вентиль.

В комплект горелки входит несколько наконечников разных номеров. Для каждого наконечника установлены размеры каналов инжектора и размеры мундштука.

Конструкция пропан-кислородных горелок отличает­ся наличием перед мундштуком устройства 10 для подо­грева пропан-кислородной смеси. Дополнительный нагрев нужен для повышения температуры пламени.

Безынжекторные горелки. В безынжйкторных горел­ках горючий газ и кислород подаются примерно под оди­наковым давлением (0,05-0,01 МПа). В горелке отсут­ствует инжектор: вместо него имеется простое смеситель­ное сопло, которое ввертывается в трубку наконечника горелки (рис. 63).

Кислород по рукаву через ниппель 4, вентиль 3 и спе­циальные дозирующие каналы поступает в смеситель го­релки. Аналогично поступает в горелку и ацетилен.

Рис. 63. Схема безынжекторной горелки

Для образования нормального сварочного пламени го­рючая смесь должна вытекать из горелки с определенной скоростью, а именно со скоростью горения. Если скорость истечения больше скорости горения, то пламя будет от­рываться от мундштука и гаснуть. Если же, наоборот, скорость истечения меньше скорости горения, то горю­чая смесь будет загораться внутри наконечника.

В связи с этим сварочные посты дополнительно обору­дуют автоматическими регуляторами, обеспечивающими равенство давлений ацетилена и кислорода.

Горелки разделяются на инжекторные и безынжекторные, однопламенные и многопламенные, для газообразных горючих (ацетиленовые и др.) и жидких (пары керосина). Наибольшее применение имеют инжекторные горелки, работающие на смеси ацетилена с кислородом.

Схема и принцип работы инжекторной горелки. Горелка состоит из двух основных частей - ствола и наконечника (рис. 64). Ствол имеет кислородный 1 и ацетиленовый 16 ниппели с трубками 3 и 15 , рукоятку 2 , корпус 4 с кислородным 5 и ацетиленовым 14 вентилями. С правой стороны горелки (если смотреть по направлению течения газов) находится кислородный вентиль 5 , а с левой стороны - ацетиленовый вентиль 14 . Вентили служат для пуска, регулирования расхода и прекращения подачи газа при гашении пламени. Наконечник, состоящий из инжектора 13 , смесительной камеры 12 и мундштука 7 , присоединяется к корпусу ствола горелки накидной гайкой.

Инжектор 13 представляет собой цилиндрическую деталь с центральным каналом малого диаметра - для кислорода и периферийными, радиально расположенными каналами - для ацетилена. Инжектор ввертывается в смесительную камеру наконечника и находится в собранной горелке между смесительной камерой и газоподводящими каналами корпуса горелки. Его назначение состоит в том, чтобы кислородной струей создавать разреженное состояние и засасывать ацетилен, поступающий под давлением не ниже 0,01 кгс/см 2 . Разрежение за инжектором достигается благодаря высокой скорости (порядка 300 м/с) кислородной струи. Давление кислорода, поступающего через вентиль 5, составляет от 0,5 до 4 кгс/см 2 .

Инжекторное устройство показано на рис. 65.

В смесительной камере кислород перемешивается с ацетиленом и смесь поступает в канал мундштука. Горючая смесь, выходящая из мундштука со скоростью 100 - 140 м/с, при зажигании горит, образуя ацетилено-кислородное пламя с температурой до 3150°С.

В комплект горелки входит несколько номеров наконечников. Для каждого номера наконечника установлены размеры каналов инжектора и размеры мундштука. В соответствии с этим изменяется расход кислорода и ацетилена при сварке.

Конструкция пропан-бутан-кислородных горелок отличается от ацетилено-кислородных горелок тем, что перед мундштуком имеется устройство 10 (рис. 64) для подогрева пропан-бутан-кислородной смеси. Дополнительный нагрев необходим для повышения температуры пламени. Обычный мундштук заменяется мундштуком измененной конструкции.

Техническая характеристика инжекторных горелок. В настоящее время промышленность выпускает сварочные горелки средней мощности - "Звезда", ГС-3 и малой мощности - "Звездочка" и ГС-2. В эксплуатации находятся также горелки "Москва" и "Малютка", выпускавшиеся до 1971 г.

Горелки "Москва", "Звезда" и ГС-3 предназначены для ручной ацетиленокислородной сварки стали толщиной 0,5 - 30 мм.

В комплект горелки средней мощности входит ствол и семь наконечников, присоединяемых к стволу горелки накидной гайкой (табл. 15), Обязательный комплект включает наконечники № 3, 4 и 6, чаще всего необходимые при выполнении сварочных работ, остальные наконечники поставляются по требованию потребителя. Горелки "Звездочка", ГС-2 и "Малютка" поставляются с наконечниками № 0, 1, 2, 3. В горелках "Звезда", ГС-3, "Звездочка" мундштуки изготовляются из бронзы Бр.Х 0,5, металла более стойкого, чем медь МЗ, применявшаяся для изготовления мундштуков горелок "Москва" и "Малютка". По этой причине срок службы выпускаемых горелок повышен по сравнению с выпускавшимися ранее.

Горелки типа ГС-3 работают с рукавами диаметром 9 мм. Горелки малой мощности "Малютка", "Звездочка" и ГС-2 предназначены для сварки сталей толщиной 0,2 - 4 мм. Горелки ГС-2 работают с резиновыми рукавами диаметром 6 мм.

Для пропан-бутан-кислородной смеси промышленность выпускает горелки типов ГЗУ-2-62-I и ГЗУ-2-62-II; первая предназначена для сварки стали толщиной от 0,5 до 7 мм, вторая - для подогрева металла. Для пламенной очистки поверхности металла от ржавчины, старой краски и т. д. выпускается ацетиленокислородная горелка Г АО (горелка ацетиленовая, очистка). Ширина поверхности, обрабатываемой горелкой за один проход, составляет 100 мм.

Для закалки металла выпускаются наконечники НАЗ-58 к стволу горелки ГС-3.

Сварку и другие виды обработки металлов пропан-бутан-кислородным пламенем можно производить горелкой ГЗМ-2-62М с четырьмя наконечниками.

Нарушение работы инжекторного устройства приводит к обратным ударам пламени и снижению запаса ацетилена в горючей смеси. Запас ацетилена представляет собой увеличение его расхода при полностью открытом ацетиленовом вентиле горелки по сравнению с паспортным расходом для данного номера мундштука. Причинами этих неполадок могут быть засорение кислородного канала, чрезмерное увеличение его диаметра вследствие износа ацетиленовых каналов, смещение инжектора по отношению к смесительной камере и наружные повреждения инжектора. Для нормальной работы горелки диаметр выходного канала мундштука должен быть равен диаметру канала смесительной камеры, а диаметр канала инжектора - в 3 раза меньше.

Посадочное место инжектора отрегулировано для инжекторов, входящих в комплект горелки.

Инжекторы горелки "Москва" можно использовать в горелке "Звезда", а инжекторы горелки "Малютка" - в горелке "Звездочка".

Проверка горелки на инжекцию (разрежение) проводится каждый раз перед началом работы и при смене наконечника. Для этого с ниппеля снимается ацетиленовый рукав и открывается кислородный вентиль. В ацетиленовом ниппеле исправной горелки должен создаваться подсос, обнаруживаемый прикосновением пальца к отверстию ниппеля.

Поддержание мундштука в надлежащем состоянии обеспечивает нормальное пламя по форме и размерам (см. гл. X). Мундштуки работают в условиях высокой температуры, подвергаются механическому разрушению от брызг при сварке и требуют ухода за ними (чистка, охлаждение и т. д.). Риски, задиры, нагар на стенках отверстия выходного канала мундштука снижают скорость выхода горючей смеси и способствуют образованию хлопков и обратных ударов, искажают форму пламени. Эти недостатки устраняют подрезкой торца мундштука на 0,5 - 1 мм, калибровкой и полировкой выходного отверстия.

После каждого ремонта детали горелок обязательно обезжиривают бензином марки Б-70.

Безынжекторные горелки работают под одинаковым давлением кислорода и ацетилена, равным от 0,1 до 0,8 кгс/см 2 . Эти горелки обеспечивают более постоянный состав горючей смеси в процессе работы. Безынжекторные горелки можно питать ацетиленом, либо от баллонов, либо от генераторов среднего давления.

Специальные горелки. Для газопламенной обработки материалов иногда целесообразно применять специальные горелки. Промышленностью выпускаются горелки для нагрева металла с целью термической обработки, удаления краски, ржавчины, горелки для пайки, сварки термопластов; пламенной наплавки и др. Принципиальное устройство специальных горелок во многом аналогично горелке, используемой для сварки металлов. Отличие состоит в форме и размерах мундштуков, а также в тепловой мощности, форме и размерах пламени. Специальные горелки выпускают для любого горючего газа.

Контрольные вопросы

1. Почему для газовой сварки из горючих газов употребляют главным образом ацетилен?

2. Расскажите о классификации ацетиленовых генераторов.

3. Какую роль выполняет в горелке инжектор?

4. Какое влияние оказывает инжекторное устройство и устройство мундштука на работу горелки?

5. Какие бывают специальные горелки?