» » Вариационные ряды и их виды. Статистическое изучение вариационных рядов и расчет средних величин Как построить вариационный ряд по выборке

Вариационные ряды и их виды. Статистическое изучение вариационных рядов и расчет средних величин Как построить вариационный ряд по выборке

Вариационными называют ряды распределения, построенные по количественному признаку. Значения количественных признаков у отдельных единиц совокупности непостоянны, более или менее различаются между собой.

Вариация - колеблемость, изменяемость величины признака у единиц совокупности. Отдельные числовые значения признака, встречающиеся в изучаемой совокупности, называют вариантами значений. Недостаточность средней величины для полной характеристики совокупности заставляет дополнять средние величины показателями, позволяющими оценить типичность этих средних путем измерения колеблемости (вариации) изучаемого признака.

Наличие вариации обусловлено влиянием большого числа факторов на формирование уровня признака. Эти факторы действуют с неодинаковой силой и в разных направлениях. Для описания меры изменчивости признаков используют показатели вариации.

Задачи статистического изучения вариации:

  • 1) изучение характера и степени вариации признаков у отдельных единиц совокупности;
  • 2) определение роли отдельных факторов или их групп в вариации тех или иных признаков совокупности.

В статистике применяются специальные методы исследования вариации, основанные на использовании системы показателей, с помощью которых измеряется вариация.

Исследование вариаций имеет важное значение. Измерение вариаций необходимо при проведении выборочного наблюдения, корреляционном и дисперсионном анализе и т. д. Ермолаев О.Ю. Математическая статистика для психологов: Учебник [Текст]/ О.Ю. Ермолаев. - М.: Изд-во Флинта Московского психолого-социального института, 2012. - 335с.

По степени вариации можно судить об однородности совокупности, об устойчивости отдельных значений признаков и типичности средней. На их основе разрабатываются показатели тесноты связи между признаками, показатели оценки точности выборочного наблюдения.

Различают вариацию в пространстве и вариацию во времени.

Под вариацией в пространстве понимают колеблемость значений признака у единиц совокупности, представляющих отдельные территории. Под вариацией во времени подразумевают изменение значений признака в различные периоды времени.

Для изучения вариации в рядах распределения проводят расположение всех вариантов значений признака в возрастающем или убывающем порядке. Этот процесс называют ранжированием ряда.

Самыми простыми признаками вариации являются минимум и максимум - самое наименьшее и наибольшее значение признака в совокупности. Число повторений отдельных вариантов значений признаков называют частотой повторения (fi). Частоты удобно заменять частостями - wi. Частость - относительный показатель частоты, который может быть выражен в долях единицы или процентах и позволяет сопоставлять вариационные ряды с различным числом наблюдений. Выражается формулой:

где Хmax, Хmin - максимальное и минимальное значения признака в совокупности; n - число групп.

Для измерения вариации признака применяются различные абсолютные и относительные показатели. К абсолютным показателям вариации относятся размах вариации, среднее линейное отклонение, дисперсия, среднее квадратическое отклонение. К относительным показателям колеблемости относят коэффициент осцилляции, относительное линейное отклонение, коэффициент вариации.

Пример нахождения вариационного ряда

Задание. По данной выборке:

  • а) Найти вариационный ряд;
  • б) Построить функцию распределения;

№=42. Элементы выборки:

1 5 1 8 1 3 9 4 7 3 7 8 7 3 2 3 5 3 8 3 5 2 8 3 7 9 5 8 8 1 2 2 5 1 6 1 7 6 7 7 6 2

Решение.

  • а) построение ранжированного вариационного ряда:
    • 1 1 1 1 1 1 2 2 2 2 2 3 3 3 3 3 3 3 4 5 5 5 5 5 6 6 6 7 7 7 7 7 7 7 8 8 8 8 8 8 9 9
  • б) построение дискретного вариационного ряда.

Вычислим число групп в вариационном ряду пользуясь формулой Стерджесса:

Примем число групп равным 7.

Зная число групп, рассчитаем величину интервала:

Для удобства построения таблицы примем число групп равным 8, интервал составит 1.

Рис. 1 Объем продаж магазином товара за определенный промежуток времени

Группа чисел, объединяемая каким-либо признаком, называется совокупностью.

Как было отмечено выше, первичный статистический спортивный материал представляет собой группу разрозненных чисел, не дающих тренеру представления о существе явления или процесса. Задача заключается в том, чтобы превратить эту совокупность в систему и воспользоваться ее показателями для получения требуемой информации.

Составление вариационного ряда как раз и представляет собой формирование определенной математической

Пример 2. У 34 спортсменов-лыжников зарегистрировано такое время восстановления пульса после прохождения дистанции (в секундах):

81; 78: 84; 90; 78; 74; 84; 85; 81; 84: 79; 84; 74; 84; 84;

85; 81; 84; 78: 81; 74; 84; 81; 84; 85; 81; 78; 81; 81; 84;

Как видно, данная группа цифр не несет никакой информации.

Для составления вариационного ряда вначале производим операцию ранжирования - расположения чисел в порядке возрастания или убывания. Например, в порядке возрастания ранжирование приводит к следующему;

78; 78; 78; 78; 78; 78;

81; 81; 81; 81; 81; 81; 81; 81; 81;

84; 84; 84; 84; 84; 84; 84; 84; 84; 84; 84;

В порядке убывания ранжирование приводит к такой группе чисел:

84; 84; 84; 84; 84; 84; 84; 84: 84: 84; 84;

81; 81; 81; 81; 8!; 81: 81; 81; 81;

78; 78; 78; 78; 78; 78;

После проведения ранжирования становится очевидной нерациональная форма записи данной группы чисел-одни и те же числа повторяются многократно. Поэтому возникает естественная мысль преобразовать запись таким образом, чтобы указать, какое число сколько раз повторяется. Например, учитывая ранжирование в порядке возрастания:

Здесь слева записано число, указывающее время восстановления пульса спортсмена, справа-число повторений этого показания в данной группе из 34 спортсменов.

В соответствии с приведенными выше понятиями о математических символах рассмотренную группу измерений обозначим какой-либо буквой, например х. Учитывая возрастающий порядок чисел в данной группе: х 1 -74 с; х 2 - 78 с; х 3 - 81 с; х 4 - 84 с; х 5 - 85 с; х 6 -х n - 90 с, каждое рассмотренное число можно обозначить символом X i .

Обозначим число повторений рассмотренных измерений буквой n. Тогда:

n 1 =4; n 2 =6; n 3 =9; n 4 =11; n 5 =3;n 6 =n n =1, а каждое число повторений можно обозначить как n i .

Общее число проведенных измерений, как следует из условия примера, есть 34. Это означает, что сумма всех n равна 34. Или в символическом выражении:

Обозначим эту сумму одной буквой - n. Тогда исходные данные рассматриваемого примера можно записать в таком виде (табл. 1).

Полученная группа чисел есть преобразованный ряд хаотически рассеянных показаний, полученных тренером в начале работы.

Таблица 1

х i n i
n=34

Такая группа представляет собой определенную систему, параметры которой характеризуют проведенные измерения. Числа, представляющие собой результаты измерений (х i), называют вариантами; n i - числа их повторений - называются частотами; n - сумма всех частот - есть объем совокупности.

Вся полученная система называется вариационным рядом. Иногда эти ряды называются эмпирическими или статистическими.

Нетрудно заметить, что возможен частный случай вариационного ряда, когда все частоты равны единице n i ==1, то есть каждое измерение в данной группе чисел встретилось только один раз.

Полученный вариационный ряд, как и всякий другой, можно представить графически. Для построения графика полученного ряда, необходимо прежде всего условиться о масштабе на горизонтальной и вертикальной оси.

В данной задаче на горизонтальной оси будем откладывать значения времени восстановления пульса (х 1) таким образом, что единице длины, избранной произвольно, соответствует значение одной секунды. Откладывать эти значения начнем с 70 секунд, условно отступая от места пересечения двух осей 0.

На вертикальной оси отложим значения частот нашего ряда (n i), принимая масштаб: единица длины равна единице частоты.

Подготовив таким образом условия для построения графика, приступаем к работе с полученным вариационным рядом.

Первую пару чисел х 1 =74, n 1 =4 наносим на график так: на оси х; находим х 1 =74 и восстанавливаем перпендикуляр из этой точки, на оси n находим n 1 =4 и проводим из нее горизонтальную линию до пересечения с восстановленным прежде перпендикуляром. Обе линии-вертикаль и горизонталь-являются линиями вспомогательными и потому наносятся на рисунок пунктиром. Точка их пересечения представляет собой в масштабе данного графика соотношение Х 1 =74 и n 1 =4.

Таким же образом наносятся все остальные точки графика. Затем они соединяются отрезками прямых. Для того чтобы график имел замкнутый вид, крайние точки соединяем отрезками с соседними точками горизонтальной оси.

Полученная фигура есть график нашего вариационного ряда (рис. 1).

Совершенно понятно, что каждый вариационный ряд представляется своим собственным графиком.

Рис. 1. Графическое представление вариационного ряда.

На рис. 1 видно:

1) из всех обследованных наибольшую группу составили спортсмены, время восстановления пульса у которых 84 с;

2) у многих это время 81 с;

3) наименьшую группу составили спортсмены с малым временем восстановления пульса - 74 с и большим - 90 с.

Таким образом, выполнив серию испытаний, следует ранжировать полученные числа и составить вариационный ряд, представляющий собой определенную математическую систему. Для наглядности вариационный ряд можно иллюстрировать графиком.

Приведенный выше вариационный ряд называется еще дискретным рядом - таким, у которого каждый вариант выражен одним числом.

Приведем еще несколько примеров на составление вариационных рядов.

Пример 3. 12 стрелков, выполняя упражнение лежа из 10 выстрелов, показали такие результаты (в очках):

94; 91; 96; 94; 94; 92; 91; 92; 91; 95; 94; 94.

Для образования вариационного ряда произведем ранжирование данных чисел;

94; 94; 94; 94; 94;

После ранжирования составляем вариационный ряд (табл. 3).

Пример решения контрольной работы по математической статистике

Задача 1

Исходные данные : студенты некоторой группы, состоящей из 30 человек сдали экзамен по курсу «Информатика». Полученные студентами оценки образуют следующий ряд чисел:

I. Составим вариационный ряд

m x

w x

m x нак

w x нак

Итого:

II. Графическое представление статистических сведений.

III. Числовые характеристики выборки.

1. Среднее арифметическое

2. Среднее геометрическое

3. Мода

4. Медиана

222222333333333 | 3 34444444445555

5. Выборочная дисперсия

7. Коэффициент вариации

8. Ассиметрия

9. Коэффициент ассиметрии

10. Эксцесс

11. Коэффициент эксцесса

Задача 2

Исходные данные : студенты некоторой группы написали выпускную контрольную работу. Группа состоит из 30 человек. Набранные студентами баллы образуют следующий ряд чисел

Решение

I. Так как признак принимает много различных значений, то для него построим интервальный вариационный ряд. Для этого сначала зададим величину интервала h . Воспользуемся формулой Стэрджера

Составим шкалу интервалов. При этом за верхнюю границу первого интервала примем величину, определяемую по формуле:

Верхние границы последующих интервалов определим по следующей рекуррентной формуле:

, тогда

Построение шкалы интервалов заканчиваем, так как верхняя граница очередного интервала стала больше или равна максимальному значению выборки
.

II. Графическое отображение интервального вариационного ряда

III. Числовые характеристики выборки

Для определения числовых характеристик выборки составим вспомогательную таблицу

Сумма :

1. Среднее арифметическое

2. Среднее геометрическое

3. Мода

4. Медиана

10 11 12 12 13 13 13 13 14 14 14 14 15 15 15 |15 15 15 16 16 16 16 16 17 17 18 19 19 20 20

5. Выборочная дисперсия

6. Выборочное стандартное отклонение

7. Коэффициент вариации

8. Ассиметрия

9. Коэффициент ассиметрии

10. Эксцесс

11. Коэффициент эксцесса

Задача 3

Условие : цена деления шкалы амперметра равна 0,1 А. Показания округляют до ближайшего целого деления. Найти вероятность того, что при отсчете будет сделана ошибка, превышающая 0,02 А.

Решение.

Ошибку округления отсчета можно рассматривать как случайную величину Х , которая распределена равномерно в интервале между двумя соседними целыми делениями. Плотность равномерного распределения

,

где
- длина интервала, в котором заключены возможные значения Х ; вне этого интервала
В данной задаче длина интервала, в котором заключены возможные значения Х , равна 0,1, поэтому

Ошибка отсчета превысит 0,02 если она будет заключена в интервале (0,02; 0,08). Тогда

Ответ: р =0,6

Задача 4

Исходные данные: математическое ожидание и стандартное отклонение нормально распределенного признака Х соответственно равны 10 и 2. Найти вероятность того, чтов результате испытания Х примет значение, заключенное в интервале (12, 14).

Решение.

Воспользуемся формулой

И теоретическими частотами

Решение

Для Х ее математическое ожидание M(X) и дисперсию D(X). Решение . Найдем функцию распределения F(x) случайной величины... ошибка выборки). Составим вариационный ряд Ширина интервала составит : Для каждого значения ряда подсчитаем, какое количество...

  • Решение: уравнение с разделяющимися переменными

    Решение

    В виде Для нахождения частного решения неоднородного уравнения составим систему Решим полученную систему... ; +47; +61; +10; -8. Построить интервальный вариационный ряд . Дать статистические оценки среднего значения...

  • Решение: Проведем расчет цепных и базисных абсолютных приростов, темпов роста, темпов прироста. Полученные значения сведем в таблицу 1

    Решение

    Объем производства продукции. Решение : Средняя арифметическая интервального вариационного ряда вычисляется следующим образом: за... Предельная ошибка выборки с вероятностью 0,954 (t=2) составит : Δ w = t*μ = 2*0,0146 = 0,02927 Определим границы...

  • Решение. Признак

    Решение

    О трудовом стаже которых и составили выборку. Средний по выборке стаж... рабочего дня этих сотрудников и составили выборку. Средняя по выборке продолжительность... 1,16, уровень значимости α = 0,05. Решение . Вариационный ряд данной выборки имеет вид: 0,71 ...

  • Рабочая учебная программа по биологии для 10-11 классов Составитель: Поликарпова С. В

    Рабочая учебная программа

    Простейших схем скрещивания» 5 Л.р. «Решение элементарных генетических задач» 6 Л.р. «Решение элементарных генетических задач» 7 Л.р. « ... , 110, 115, 112, 110. Составьте вариационный ряд , начертите вариационную кривую, найдите среднюю величину признака...

  • Различные выборочные значения назовемвариантами ряда значений и обозначим: х 1 , х 2 , …. Прежде всего произведем ранжирование вариантов, т.е. расположение их в порядке возрастания или убывания. Для каждого варианта указывается свой вес, т.е. число, которое характеризует вклад данного варианта в общую совокупность. В качестве весов выступают частоты или частости.

    Частотой n i варианта х i называется число, показывающее сколько раз встречается данный вариант в рассматриваемой выборочной совокупности.

    Частостью или относительной частотой w i варианта х i называется число, равное отношению частоты варианта к сумме частот всех вариантов. Частость показывает, какая часть единиц выборочной совокупности имеет данный вариант.

    Последовательность вариантов с соответствующими им весами (частотами или частостями), записанная в порядке возрастания (или убывания), называется вариационным рядом .

    Вариационные ряды бывают дискретными и интервальными.

    Для дискретного вариационного ряда задаются точечные значения признака, для интервального – значения признака задаются в виде интервалов. Вариационные ряды могут показывать распределение частот или относительных частот (частостей), в зависимости от того, какая величина указывается для каждого варианта – частота или частость.

    Дискретный вариационный ряд распределения частот имеет вид:

    Частости находятся по формуле , i = 1, 2, …, m .

    w 1 + w 2 + … + w m = 1.

    Пример 4.1. Для данной совокупности чисел

    4, 6, 6, 3, 4, 9, 6, 4, 6, 6

    построить дискретные вариационные ряды распределения частот и частостей.

    Решение . Объем совокупности равен n = 10. Дискретный ряд распределения частот имеет вид

    Аналогичную форму записи имеют интервальные ряды.

    Интервальный вариационный ряд распределения частот записывается в виде:

    Сумма всех частот равна общему числу наблюдений, т.е. объему совокупности: n = n 1 + n 2 + … + n m .

    Интервальный вариационный ряд распределения относительных частот (частостей) имеет вид:

    Частость находится по формуле , i = 1, 2, …, m .

    Сумма всех частостей равна единице: w 1 + w 2 + … + w m = 1.

    Наиболее часто на практике применяются интервальные ряды. Если статистических выборочных данных очень много и их значения отличаются друг от друга на сколь угодно малую величину, то дискретный ряд для этих данных будет достаточно громоздким и неудобным для дальнейшего исследования. В этом случае применяют группировку данных, т.е. промежуток, содержащий все значения признака, разбивают на несколько частичных интервалов и, подсчитав частоту для каждого интервала, получают интервальный ряд. Запишем более подробно схему построения интервального ряда, предположив, что длины частичных интервалов будут одинаковыми.

    2.2 Построение интервального ряда

    Для построения интервального ряда нужно:

    Определить число интервалов;

    Определить длину интервалов;

    Определить расположение интервалов на оси.

    Для определения числа интервалов k существует формула Стерджеса, по которой

    ,

    где n - объем всей совокупности.

    Например, если имеется 100 значений признака (вариант), то рекомендуется для построения интервального ряда взять число интервалов равным интервалам.

    Однако очень часто на практике число интервалов выбирает сам исследователь, учитывая, что это число не должно быть очень большим, чтобы ряд не был громоздким, но и не очень маленьким, чтобы не потерять некоторых свойств распределения.

    Длина интервала h определяется по следующей формуле:

    ,

    где x max и x min - это соответственно самое большое и самое маленькое значения вариантов.

    Величину называют размахом ряда.

    Для построения самих интервалов поступают по-разному. Один из самых простых способов заключается в следующем. За начало первого интервала принимают величину
    . Тогда остальные границы интервалов находятся по формуле . Очевидно, что конец последнего интервала a m+1 должен удовлетворять условию

    После того как найдены все границы интервалов, определяют частоты (или частости) этих интервалов. Для решения этой задачи просматривают все варианты и определяют число вариант, попавших в тот или иной интервал. Полное построение интервального ряда рассмотрим на примере.

    Пример 4.2. Для следующих статистических данных, записанных в порядке возрастания, построить интервальный ряд с числом интервалов, равным 5:

    11, 12, 12, 14, 14, 15, 21, 21, 22, 23, 25, 38, 38, 39, 42, 42, 44, 45, 50, 50, 55, 56, 58, 60, 62, 63, 65, 68, 68, 68, 70, 75, 78, 78, 78, 78, 80, 80, 86, 88, 90, 91, 91, 91, 91, 91, 93, 93, 95, 96.

    Решение. Всего n =50 значений вариантов.

    Число интервалов задано в условии задачи, т.е. k =5.

    Длина интервалов равна
    .

    Определим границы интервалов:

    a 1 = 11 − 8,5 = 2,5; a 2 = 2,5 + 17 = 19,5; a 3 = 19,5 + 17 = 36,5;

    a 4 = 36,5 + 17 = 53,5; a 5 = 53,5 + 17 = 70,5; a 6 = 70,5 + 17 = 87,5;

    a 7 = 87,5 +17 = 104,5.

    Для определения частоты интервалов посчитываем число вариантов, попавших в данный интервал. Например, в первый интервал от 2,5 до 19,5 попадают варианты 11, 12, 12, 14, 14, 15. Их число равно 6, следовательно, частота первого интервала равна n 1 =6. Частость первого интервала равна . Во второй интервал от 19,5 до 36,5 попадают варианты 21, 21, 22, 23, 25, число которых равно 5. Следовательно, частота второго интервала равна n 2 =5, а частость . Найдя аналогичным образом частоты и частости для всех интервалов, получим следующие интервальные ряды.

    Интервальный ряд распределения частот имеет вид:

    Сумма частот равна 6+5+9+11+8+11=50.

    Интервальный ряд распределения частостей имеет вид:

    Сумма частостей равна 0,12+0,1+0,18+0,22+0,16+0,22=1. ■

    При построении интервальных рядов, в зависимости от конкретных условий рассматриваемой задачи, могут применяться и другие правила, а именно

    1. Интервальные вариационные ряды могут состоять из частичных интервалов разной длины. Неравные длины интервалов позволяют выделить свойства статистической совокупности с неравномерным распределением признака. Например, если границы интервалов определяют численность жителей в городах, то целесообразно в данной задаче использовать неравные по длине интервалы. Очевидно, что для небольших городов имеет значение и небольшая разница в числе жителей, а для больших городов разница в десятки и сотни жителей не имеет существенного значения. Интервальные ряды с неравными длинами частичных интервалов исследуются, в основном, в общей теории статистики и их рассмотрение выходит за рамки данного пособия.

    2. В математической статистике иногда рассматривают интервальные ряды, для которых левую границу первого интервала полагают равной –∞, а правую границу последнего интервала +∞. Это делается для того, чтобы приблизить статистическое распределение к теоретическому.

    3. При построении интервальных рядов может оказаться, что значение какого-то варианта совпадает в точности с границей интервала. Лучше всего в этом случае поступить следующим образом. Если такое совпадение только одно, то считать, что рассматриваемый вариант со своей частотой попал в интервал, находящийся ближе к середине интервального ряда, если таких вариантов несколько, то либо все их отнести к правым от этих вариант интервалам, либо все – к левым.

    4. После определения числа интервалов и их длины, расположение интервалов можно производить и по другому способу. Находят среднее арифметическое всех рассматриваемых значений вариантов х ср. и строят первый интервал таким образом, чтобы это среднее выборочное находилось бы внутри какого-то интервала. Таким образом, получаем интервал от х ср. – 0,5h до х ср.. + 0,5h . Затем влево и вправо, прибавляя длину интервала, строим остальные интервалы до тех пор, пока x min и x max не попадут соответственно в первый и последний интервалы.

    5. Интервальные ряды при большом числе интервалов удобно записывать вертикально, т.е. интервалы записывать не в первой строке, а в первом столбце, а частоты (или частости) во втором столбце.

    Выборочные данные могут рассматриваться как значения некоторой случайной величины Х . Случайная величина имеет свой закон распределения. Из теории вероятностей известно, что закон распределения дискретной случайной величины можно задать в виде ряда распределения, а непрерывной – с помощью функции плотности распределения. Однако существует универсальный закон распределения, который имеет место и для дискретной и для непрерывной случайных величин. Этот закон распределения задается в виде функции распределения F (x ) = P (X <x ). Для выборочных данных можно указать аналог функции распределения – эмпирическую функцию распределения.

    Статистический ряд распределения – это упорядоченное распределение единиц совокупности на группы по определённому варьирующему признаку.
    В зависимости от признака, положенного в основу образования ряда распределения, различают атрибутивные и вариационные ряды распределения .

    Наличие общего признака является основой для образования статистической совокупности, которая представляет собой результаты описания или измерения общих признаков объектов исследования.

    Предметом изучения в статистике являются изменяющиеся (варьирующие) признаки или статистические признаками.

    Виды статистических признаков .

    Атрибутивными называют ряды распределения , построенные по качественным признакам. Атрибутивный – это признак, имеющий наименование, (например профессия: швея, учитель и т.д.).
    Ряд распределения принято оформлять в виде таблиц. В табл. 2.8 приведён атрибутивный ряд распределения.
    Таблица 2.8 - Распределение видов юридической помощи, оказанной адвокатами гражданам одного из регионов РФ.

    Вариационный ряд – это значения признака (или интервалы значений) и их частоты.
    Вариационными рядами называют ряды распределения , построенные по количественному признаку. Любой вариационный ряд состоит из двух элементов: вариантов и частот.
    Вариантами считаются отдельные значения признака, которые он принимает в вариационном ряду.
    Частоты – это численности отдельных вариантов или каждой группы вариационного ряда, т.е. это числа, показывающие, как часто встречаются те или иные варианты в ряду распределения. Сумма всех частот определяет численность всей совокупности, её объём.
    Частостями называются частоты, выраженные в долях единицы или в процентах к итогу. Соответственно сумма частостей равна 1 или 100 %. Вариационный ряд позволяет по фактическим данным оценить форму закона распределения.

    В зависимости от характера вариации признака различают дискретные и интервальные вариационные ряды .
    Пример дискретного вариационного ряда приведен в табл. 2.9.
    Таблица 2.9 - Распределение семей по числу занимаемых комнат в отдельных квартирах в 1989 г. в РФ.

    В первой колонке таблицы представлены варианты дискретного вариационного ряда, во второй – помещены частоты вариационного ряда, в третьей – показатели частости.

    Вариационный ряд

    В генеральной совокупности исследуется некоторый количественный признак. Из нее случайным образом извлекается выборка объема n , то есть число элементов выборки равно n . На первом этапе статистической обработки производят ранжирование выборки, т.е. упорядочивание чисел x 1 , x 2 , …, x n по возрастанию. Каждое наблюдаемое значение x i называется вариантой . Частота m i – это число наблюдений значения x i в выборке. Относительная частота (частость) w i – это отношение частоты m i к объему выборкиn : .
    При изучении вариационного ряда также используют понятия накопленной частоты и накопленной частости. Пусть x некоторое число. Тогда количество вариантов, значения которых меньше x , называется накопленной частотой: для x i n называется накопленной частостью w i max .
    Признак называется дискретно варьируемым, если его отдельные значения (варианты) отличаются друг от друга на некоторую конечную величину (обычно целое число). Вариационный ряд такого признака называется дискретным вариационным рядом.

    Таблица 1. Общий вид дискретного вариационного ряда частот

    Значения признака x i x 1 x 2 x n
    Частоты m i m 1 m 2 m n

    Признак называется непрерывно варьирующим, если его значения отличаются друг от друга на сколь угодно малую величину, т.е. признак может принимать любые значения в некотором интервале. Непрерывный вариационный ряд для такого признака называется интервальным.

    Таблица 2. Общий вид интервального вариационного ряда частот

    Таблица 3. Графические изображения вариационного ряда

    Ряд Полигон или гистограмма Эмпирическая функция распределения
    Дискретный
    Интервальный
    Просматривая результаты проведенных наблюдений, определяют, сколько значений вариантов попало в каждый конкретный интервал. Предполагается, что каждому интервалу принадлежит один из его концов: либо во всех случаях левые (чаще), либо во всех случаях правые, а частоты или частости показывают число вариантов, заключенных в указанных границах. Разности a i – a i +1 называются частичными интервалами. Для упрощения последующих расчетов интервальный вариационный ряд можно заменить условно дискретным. В этом случае серединное значение i -го интервала принимают за вариант x i , а соответствующую интервальную частоту m i – за частоту этого интервала.
    Для графического изображения вариационных рядов наиболее часто используются полигон, гистограмма, кумулятивная кривая и эмпирическая функция распределения.

    В табл. 2.3 (Группировка населения России по размеру среднедушевого дохода в апреле 1994г.) представлен интервальный вариационный ряд .
    Удобно ряды распределения анализировать при помощи графического изображения, позволяющего судить и о форме распределения. Наглядное представление о характере изменения частот вариационного ряда дают полигон и гистограмма .
    Полигон используется при изображении дискретных вариационных рядов .
    Изобразим, например графически распределение жилого фонда по типу квартир, (табл. 2.10).
    Таблица 2.10 - Распределение жилого фонда городского района по типу квартир (цифры условные).


    Рис. Полигон распределения жилого фонда


    На оси ординат могут наноситься не только значения частот, но и частостей вариационного ряда.
    Гистограмма принимается для изображения интервального вариационного ряда . При построении гистограммы на оси абсцисс откладываются величины интервалов, а частоты изображаются прямоугольниками, построенными на соответствующих интервалах. Высота столбиков в случае равных интервалов должна быть пропорциональна частотам. Гистограмма – график, на котором ряд изображен в виде смежных друг с другом столбиков.
    Изобразим графически интервальный ряд распределения, приведённый в табл. 2.11.
    Таблица 2.11 - Распределение семей по размеру жилой площади, приходящейся на одного человека (цифры условные).
    N п/п Группы семей по размеру жилой площади, приходящейся на одного человека Число семей с данным размером жилой площади Накопленное число семей
    1 3 – 5 10 10
    2 5 – 7 20 30
    3 7 – 9 40 70
    4 9 – 11 30 100
    5 11 – 13 15 115
    ВСЕГО 115 ----


    Рис. 2.2. Гистограмма распределения семей по размеру жилой площади, приходящейся на одного человека


    Используя данные накопленного ряда (табл. 2.11), построим кумуляту распределения.


    Рис. 2.3. Кумулята распределения семей по размеру жилой площади, приходящейся на одного человека


    Изображение вариационного ряда в виде кумуляты особенно эффективно для вариационных рядов, частоты которых выражены в долях или процентах к сумме частот ряда.
    Если при графическом изображении вариационного ряда в виде кумуляты оси поменять, то мы получим огиву . На рис. 2.4 приведена огива, построенная на основе данных табл. 2.11.
    Гистограмма может быть преобразована в полигон распределения, если найти середины сторон прямоугольников и затем эти точки соединить прямыми линиями. Полученный полигон распределения изображён на рис. 2.2 пунктирной линией.
    При построении гистограммы распределения вариационного ряда с неравными интервалами по оси ординат наносят не частоты, а плотность распределения признака в соответствующих интервалах.
    Плотность распределения – это частота, рассчитанная на единицу ширины интервала, т.е. сколько единиц в каждой группе приходится на единицу величины интервала. Пример расчета плотности распределения представлен в табл. 2.12.
    Таблица 2.12 - Распределение предприятий по числу занятых (цифры условные)
    N п/п Группы предприятий по числу занятых, чел. Число предприятий Величина интервала, чел. Плотность распределения
    А 1 2 3=1/2
    1 До 20 15 20 0,75
    2 20 – 80 27 60 0,25
    3 80 – 150 35 70 0,5
    4 150 – 300 60 150 0,4
    5 300 – 500 10 200 0,05
    ВСЕГО 147 ---- ----

    Для графического изображения вариационных рядов может также использоваться кумулятивная кривая . При помощи кумуляты (кривой сумм) изображается ряд накопленных частот. Накопленные частоты определяются путём последовательно суммирования частот по группам и показывают, сколько единиц совокупности имеют значения признака не больше, чем рассматриваемое значение.


    Рис. 2.4. Огива распределения семей по размеру жилой площади, приходящейся на одного человека

    При построении кумуляты интервального вариационного ряда по оси абсцисс откладываются варианты ряда, а по оси ординат накопленные частоты.

    Непрерывный вариационный ряд

    Непрерывный вариационный ряд - ряд, построенный на основе количественного статистического признака . Пример . Средняя продолжительность заболеваний осужденных (дней на одного человека) в осенне-зимний период в текущем год составила:
    7,0 6,0 5,9 9,4 6,5 7,3 7,6 9,3 5,8 7,2
    7,1 8,3 7,5 6,8 7,1 9,2 6,1 8,5 7,4 7,8
    10,2 9,4 8,8 8,3 7,9 9,2 8,9 9,0 8,7 8,5