» » Как решать уравнения с параметрами. Линейные уравнения с параметром

Как решать уравнения с параметрами. Линейные уравнения с параметром

В последние годы на вступительных экзаменах, на итоговом тестировании в форме ЕГЭ предлагаются задачи с параметрами. Эти задачи позволяют диагностировать уровень математического и, главное, логического мышления абитуриентов, способность осуществлять исследовательскую деятельность, а также просто знание основных разделов школьного курса математики.

Взгляд на параметр как на равноправную переменную находит своё отражение в графических методах. В самом деле, поскольку параметр “равен в правах” с переменной, то ему, естественно, можно “выделить” и свою координатную ось. Таким образом, возникает координатная плоскость . Отказ от традиционного выбора букв и для обозначения осей, определяет один из эффективнейших методов решения задач с параметрами – “метод областей”. Наряду с другими методами, применяемыми при решении задач с параметрами, я знакомлю своих учеников и с графическими приёмами, обращая внимание на то, как распознать “такие” задачи и как выглядит процесс решения задачи.

Самые общие признаки, которые помогут узнавать задачи, подходящие под рассматриваемый метод:

Задача 1. “При каких значениях параметра неравенство выполняется при всех ?”

Решение. 1). Раскроем модули с учётом знака подмодульного выражения:

2). Запишем все системы получившихся неравенств:

а)

б) в)

г)

3). Покажем множество точек, удовлетворяющих каждой системе неравенств (рис.1а).

4). Объединяя все области, показанные на рисунке штриховкой, можно заметить, что неравенству не удовлетворяют точки , лежащие внутри парабол.

На рисунке видно, что при любом значении параметра можно найти область, где лежат точки, координаты которых удовлетворяют исходному неравенству. Неравенство выполняется при всех , если . Ответ: при .

Рассмотренный пример представляет собой “открытую задачу” - можно рассмотреть решение целого класса задач, не изменяя рассмотренное в примере выражение, в которых технические трудности построения графиков уже преодолены.

Задача. При каких значениях параметра уравнение не имеет решений? Ответ: при .

Задача. При каких значениях параметра уравнение имеет два решения? Запишите оба найденных решения.

Ответ: , тогда , ;

Тогда ; , тогда , .

Задача. При каких значениях параметра уравнение имеет один корень? Найдите этот корень. Ответ: при при .

Задача. Решите неравенство .

(“Работают” точки, лежащие внутри парабол).

, ; , решений нет;

Задача 2.Найдите все значения параметра а , при каждом из которых система неравенств образует на числовой прямой отрезок длины 1.

Решение. Перепишем исходную систему в таком виде

Все решения этой системы (пары вида ) образуют некоторую область, ограниченную параболами и (рис 1).

Очевидно, решением системы неравенств будет отрезок длины 1 при и при . Ответ: ; .

Задача 3.Найдите все значения параметра , при которых множество решений неравенства содержит число , а так же содержит два отрезка длиной , не имеющие общих точек.

Решение. По смыслу неравенства ; перепишем неравенство, умножив обе его части на (), получаем неравенство:

, ,

(1)

Неравенство (1) равносильно совокупности двух систем:

(рис. 2).

Очевидно, интервал не может содержать отрезка длины . Значит, два непересекающихся отрезка длины содержатся в интервале Это возможно при , т.е. при . Ответ: .

Задача 4.Найдите все значения параметра , при каждом из которых множество решений неравенства содержит отрезок длиной 4 и при этом содержится в некотором отрезке длиной 7.

Решение. Проведём равносильные преобразования, учитывая, что и .

, ,

; последнее неравенство равносильно совокупности двух систем:

Покажем области, которые соответствуют этим системам (рис. 3).

1) При множество решений – это интервал длиной, меньшей 4. При множество решений – это объединение двух интервалов .Содержать отрезок длиной 4 может только интервал . Но тогда , и объединение уже не содержится ни в каком отрезке длиной 7. Значит, такие не удовлетворяют условию.

2) множество решений – это интервал . Он содержит отрезок длиной 4, только если его длина больше 4, т.е. при . Он содержится в отрезке длиной 7, только если его длина не больше 7, т. е. при , тогда . Ответ: .

Задача 5. Найдите все значения параметра , при которых множество решений неравенства содержит число 4, а также содержит два непересекающихся отрезка длиной 4 каждый.

Решение. По условия . Домножим обе части неравенства на (). Получим равносильное неравенство, в котором сгруппируем все члены в левой части и преобразуем её в произведение:

, ,

, .

Из последнего неравенства следует:

1) 2)

Покажем области, которые соответствуют этим системам (рис. 4).

а) При получаем интервал , не содержащий числа 4. При получаем интервал , также не содержащий числа 4.

б) При получаем объединение двух интервалов. Непересекающиеся отрезки длиной 4 могут располагаться только в интервале . Это возможно только в том случае, если длина интервала больше 8, т. е. если . При таких выполнено и другое условие: . Ответ: .

Задача 6. Найдите все значения параметра , при которых множество решений неравенства содержит какой-нибудь отрезок длиной 2, но не содержит никакого отрезка длиной 3.

Решение. По смыслу задания , умножим обе части неравенства на , сгруппируем все члены в левой части неравенства и преобразуем её в произведение:

, . Из последнего неравенства следует:

1) 2)

Покажем область, которая соответствует первой системе (рис. 5).

Очевидно, что условие задачи выполняется, если . Ответ: .

Задача 7. Найдите все значения параметра , при которых множество решений неравенства 1+ содержится в некотором отрезке длиной 1 и при этом содержит какой-нибудь отрезок длиной 0,5.

Решение. 1). Укажем ОДЗ переменной и параметра:

2). Перепишем неравенство в виде

, ,

(1). Неравенство (1) равносильно совокупности двух систем:

1)

2)

С учётом ОДЗ решения систем выглядят так:

а) б)

(рис. 6).

а) б)

Покажем область, соответствующую системе а) (рис. 7). Ответ: .

Задача 8. Шесть чисел образуют возрастающую арифметическую прогрессию. Первый, второй и четвертый члены этой прогрессии являются решениями неравенства , а остальные

не являются решениями этого неравенства. Найдите множество всех возможных значений первого члена таких прогрессий.

Решение. I. Найдём все решения неравенства

а). ОДЗ:
, т.е.

(учли в решении, что функция возрастает на ).

б). На ОДЗ неравенство равносильно неравенству , т.е. , что даёт:

1).

2).

Очевидно, решением неравенства служит множество значений .

II. Проиллюстрируем вторую часть задачи о членах возрастающей арифметической прогрессии рисунком (рис. 8 , где - первый член, - второй и т.д.). Заметим, что:

Или имеем систему линейных неравенств:

решим её графическим способом. Строим прямые и , а также прямые

То, .. Первый, второй и шестой члены этой прогрессии являются решениями неравенства , а остальные не являются решениями этого неравенства. Найдите множество всех возможных значений разности этой прогрессии.

1. Задача.
При каких значениях параметра a уравнение (a - 1)x 2 + 2x + a - 1 = 0 имеет ровно один корень?

1. Решение.
При a = 1 уравнение имеет вид 2x = 0 и, очевидно, имеет единственный корень x = 0. Если a № 1, то данное уравнение является квадратным и имеет единственный корень при тех значениях параметра, при которых дискриминант квадратного трехчлена равен нулю. Приравнивая дискриминант к нулю, получаем уравнение относительно параметра a 4a 2 - 8a = 0, откуда a = 0 или a = 2.

1. Ответ: уравнение имеет единственный корень при a О {0; 1; 2}.

2. Задача.
Найти все значения параметра a , при которых имеет два различных корня уравнение x 2 +4ax +8a +3 = 0.
2. Решение.
Уравнение x 2 +4ax +8a +3 = 0 имеет два различных корня тогда и только тогда, когда D = 16a 2 -4(8a +3) > 0. Получаем (после сокращения на общий множитель 4) 4a 2 -8a -3 > 0, откуда

2. Ответ:

a О (-Ґ ; 1 – Ц 7 2
) И (1 + Ц 7 2
; Ґ ).

3. Задача.
Известно, что
f 2 (x ) = 6x -x 2 -6.
а) Постройте график функции f 1 (x ) при a = 1.
б) При каком значении a графики функций f 1 (x ) и f 2 (x ) имеют единственную общую точку?

3. Решение.
3.а. Преобразуем f 1 (x ) следующим образом
График этой функции при a = 1 изображен на рисунке справа.
3.б. Сразу отметим, что графики функций y = kx +b и y = ax 2 +bx +c (a № 0) пересекаются в единственной точке тогда и только тогда, когда квадратное уравнение kx +b = ax 2 +bx +c имеет единственный корень. Используя представление f 1 из 3.а , приравняем дискриминант уравнения a = 6x -x 2 -6 к нулю. Из уравнения 36-24-4a = 0 получаем a = 3. Проделав то же самое с уравнением 2x -a = 6x -x 2 -6 найдем a = 2. Нетрудно убедиться, что эти значения параметра удовлетворяют условиям задачи. Ответ: a = 2 или a = 3.

4. Задача.
Найти все значения a , при которых множество решений неравенства x 2 -2ax -3a і 0 содержит отрезок .

4. Решение.
Первая координата вершины параболы f (x ) = x 2 -2ax -3a равна x 0 = a . Из свойств квадратичной функции условие f (x ) і 0 на отрезке равносильно совокупности трех систем
имеет ровно два решения?

5. Решение.
Перепишем это уравнение в виде x 2 + (2a -2)x - 3a +7 = 0. Это квадратное уравнение, оно имеет ровно два решения, если его дискриминант строго больше нуля. Вычисляя дискриминант, получаем, что условием наличия ровно двух корней является выполнение неравенства a 2 +a -6 > 0. Решая неравенство, находим a < -3 или a > 2. Первое из неравенств, очевидно, решений в натуральных числах не имеет, а наименьшим натуральным решением второго является число 3.

5. Ответ: 3.

6. Задача (10 кл.)
Найти все значения a , при которых график функции или, после очевидных преобразований, a -2 = | 2-a | . Последнее уравнение равносильно неравенству a і 2.

6. Ответ: a О }