» » Выбор оптимального режима контактной точечной сварки методом планирования эксперимента. Оборудование для контактной точечной сварки Оптимизация режимов в контактно точечной сварки

Выбор оптимального режима контактной точечной сварки методом планирования эксперимента. Оборудование для контактной точечной сварки Оптимизация режимов в контактно точечной сварки

Основными программируемыми параметрами процесса точечной или роликовой сварки являются ток, усилие сжатия электродов, продолжительность их действия и геометрия рабочей поверхности электродов. Параметры процесса, как принято, будем считать заданными, если они указаны для единичного цикла формировании отдельной сварной точки как в случае точечной, так и роликовой сварки. В связи с тем, что получение сварного соединения с заданными прочностными свойствами, в большинстве случаев, тождественно получению соединения и заданными размерами зоны расплавления, диаметр ядра и проплавление будем применять в качестве критерии качества процесса. Это позволяет исключать из рассмотрения конструкцию сварного узла, металлургические Особенности формирования соединения и т.п.

Известно, что при роликовой и точечной сварке возможно достаточно большое сочетание величин тока и усилии, которые удовлетворяют задаче формирования литого ядра с заданными размерами. Это свидетельствует о том, что параметры процесса неоднозначно зависят от свойств свариваемого металла и его толщины. Их величина и поле допуска зависят от режима сварки и применяемого оборудовании. В ряде случаев именно оборудование предопределяет режим сварки. При всех прочих равных условиях, как стабильность свойств металла, качество его подготовки, идентичность электродов и др., наиболее стабильные результаты по сварке многих металлов поручаются на машинах, работающих с использованием энергии, запасенной в конденсаторах. Если режимы сварки, характерные для конденсаторных машин, применять при сварке на низкочастотных машинах, то результаты будут нестабильными. Допуск на разброс величины тока и продолжительность его действия, автоматически заданные исходя из режима сварки на конденсаторной машине, не могут быть выдержаны при сварке на низкочастотной машине. Поэтому для ослабления тесноты связи с размерами ядра тех параметров процесса, которыми в данной ситуации точно управлять не удается, режим сварки изменяют, удовлетворяя минимальным требованиям, предъявляемым к качеству. В приведенном примере нестабильность амплитуды тока и продолжительности его действия компенсируется тем, что переходят к мягким режимам, т.е. снижают несколько амплитуду тока и увеличивают продолжительность его действия. Такое изменение не является улучшением, несмотря на увеличение допуска на амплитуду тока и продолжительность его действия, так как более жесткими становятся требования к другим параметрам процесса, например к геометрии рабочей поверхности электродов. Кроме того, увеличивается частота заправки электродов, уменьшается их стойкость.

Предпочтительные, рекомендованные режимы отражают как свойства свариваемых металлов, так и возможности по управлению процессом, т.е. преимущества и недостатки имеющегося оборудования. В связи с тем, что обоснование и выбор режима сварки является самостоятельной задачей, способы решения которой достаточно полно рассмотрены в литературе, будем считать режимы сварки заданными. Допустимые отклонения параметром процесса примем равными тем отклонениям, которые разрешаются для оборудования контактной сварки.

Существует много технических приемов задания параметров процесса через параметры цикла, в том числе от дельных интервалов времени между командами на исполнительные устройства сварочной машины. Однако с точки зрения обеспечения технологического цикла сварки отдельной точки можно выделить самостоятельные этапы, отвлекаясь от технических особенностей устройств управления.

Циклограмма, приведенная на рис. 1, отражает особенности задания параметров процесса через параметры цикла. Можно считать, что каждый этап и соответственно каждая величина, характеризующая его, является самостоятельным параметром, так как имеет отличное целевое назначение. Очевидно, что на отдельных этапах цикла величины допусков для тока и усилия будут различными. Время необходимо для того, чтобы электроды машины успели переместиться и сжать металл с вполне определенным усилием. На этом этапе к устройствам, отсчитывающим интервал времени, не предъявляется жестких требований. Аналогично, в тех случаях, когда применяется предварительное, обжатие, интервал, в течение которого электроды вжимают металл с повышенным усилием , также можно выдерживать с невысокой точностью. Эти требовании распространяются и на устройства, задающие время сжатии металла по окончании действия тока а также на интервал, соответствующий разомкнутому состоянию электродов . Как правило, указанные интервалы цикла в условиях производства не контролируются. Установившими усилия сжатия электродов и оказывают существенное влияние на качество сварных соединений и поэтому подлежат обязательному контролю, хотя допустимые отклонения их от заданного значения для , , различны.

Рис. 1 . Типичная циклограмма процесса точечной сварки

Длительность нарастания ковочного усилия является одной из основных характеристик привода усилия сжатия электродов и может оказывать сильное влияние на образовании макродефектов в литой зоне соединения. Вследствие инерционности механизма сжатия электродов основное стремление состоит в увеличении скорости нарастания усилия . У лучших образцов машин составляет не более 0,02 сек, считая от момента подачи команды на исполнительный механизм до момента времени, когда достигло уровня 2/3 от установившегося. Важным параметром цикла является интервал , определяющий момент включении ковочного усилия по отношению к импульсу сварочного тока . В связи с тем, что даже относительно малая нестабильность этих параметров цикла существенно влияет на качество соединения, их необходимо периодически контролировать.

Особое значение имеют временные интервалы цикла , и , характеризующие программу изменения тока, а также величины тока и . Однако точность зада ния параметров цикла и , может быть меньше, чем и .

В результате исследовательских работ и производственного опыта по точечной и роликовой сварке установлено, что в большинстве случаев можно принять следующую необходимую точность (в %) воспроизведения сварочной машиной основных этапов цикла (см. рис. 1):

Величина сварочного тока,

Длительность импульса сварочного тока,

Величина дополнительного импульса тока,

Длительность дополнительного импульса тока,

Пауза между импульсами,

Включение ковочного усилия,

Пауза между импульсами при роликовой сварке

Сварочное усилие,

Ковочное усилие, (усилие обжатия, )

Приведенные значения допустимых отклонений параметров справедливы для тех случаев, когда сварка осуществляется на режимах, оцениваемых как предпочтительные. Все случайные отклонения параметров должны находиться внутри поля допуска. Предполагается, что распределение плотности вероятных отклонений близко к нормальному распределению. Применяя контрольно-измерительную аппаратуру и статистически обрабатывая данные измерений, можно в каждом конкретном случае в зависимости от ответственности данного изделия задаться числом допустимых предельных отклонений параметров. Ориентировочно в среднем число точек, при котором любой из параметров принимает один раз предельное допустимое значение, не должно быть слишком большим, например, 1 раз на 100…200 точек. Малое допустимое среднеквадратичное отклонение параметров процесса объясняется тем, что вероятность брака зависит от совокупности отклонений всех параметров процесса в целом. Кроме того, сварочное оборудование, как правило, является универсальным и рассчитывают его так, чтобы можно было сваривать детали не только из одного конкретного металла, а из совокупности металлов, для каждого из которых требования к точности задания хотя бы одного параметра были наиболее высокими. Обычно, в реальных условиях указанные предельные отклонения параметров не приводят к браку.

Например, на рис. 2 приведены частные данные, характеризующие стабильность процесса сварки деталей толщиной 1,5+1,5 мм из сплава Д16. Предельные отклонения параметров процесса, вызывающие недопустимое снижение качества сварки, находятся вне поля допуска, указанного выше. Предположим, что разброс параметров сварочной машины не превышает границы допуска. Ситуации, при которой возможно недопустимое снижение качества, возникает лишь в том случае, когда два или большее число параметров одновременно принимают предельно допустимые значения. Равновероятны такие неблагоприятные события: уменьшился на 5%, возросло на 10%; возрос на 5%, увеличилось на 10%; и возросли на 5%; и уменьшились на 5%; возросло на 10%, уменьшилось на 5%; уменьшилось на 10%, увеличилось на 5%; уменьшилось на 15%, увеличилось на 5%; уменьшился на 5%, радиус электродов увеличился с 75 до 200 мм; увеличилось на 10%, а радиус электродов увеличился с 75 до 200 мм. Пусть, вероятность того, что в названных ситуациях возникает брак, равна 0,5, а предельные отклонения параметров процесса случаются в среднем 1 раз на 50 точек. Тогда на каждую тысячу точек в среднем хотя бы две точки не будут соответствовать принятому стандарту.

Предположим, что на 200 точек случается одно отклонение каждого параметра, выходящее за границы допуска и с вероятностью 0,9 можно утверждать, что при этом появляется брак. Тогда вероятность появления брака резко возрастает и составляет примерно 3% от общего числа точек.

Возможные случайные отклонения в подготовительных операциях, например ухудшилось качество травления поверхности, плоха подгонка деталей, имеет место разнотолщинность, металла, изменились его физические свойства, способствуют увеличению общего числа случаев брака.

При статистическом анализе производства деталей из сплава АМг6 наблюдался разброс параметров процесса, оцениваемый среднеквадратичными отклонениями: ; , рабочей поверхности электродов , сопротивления деталей после травления . Количество точек, не соответствующие принятому стандарту, составило 5% общего числа точек. Очевидно, что к измерительной и контрольной аппаратуре предъявляются весьма высокие требования по точности, так как предельно допустимые отклонения параметром в ряде случаев менее 5%. Измерительная аппаратура должна обеспечивать точность на несколько классов выше. К сожалению, при разработке даже специализированной аппаратуры не всегда удается полностью удовлетворить эти требования. Поэтому при рассмотрении приборов и устройств высказаны замечания о целевом назначении и области применения отдельных устройств, которые имеют несколько худшие показатели точности, и не удовлетворяют решению вопроса в целом, но с успехом могут применятся при решении частных задач.


Точечная сварка является разновидностью контактной сварки. При этом способе, нагрев металла до температуры его плавления осуществляется теплом, которое образуется при прохождении большого электрического тока от одной детали к другой через место их контакта. Одновременно с пропусканием тока и некоторое время спустя после него производится сжатие деталей, в результате чего происходит взаимное проникновение и сплавление нагретых участков металла.

Особенностями контактной точечной сварки являются: малое время сварки (от 0,1 до нескольких секунд), большой сварочный ток (более 1000А), малое напряжение в сварочной цепи (1-10В, обычно 2-3В), значительное усилие сжимающее место сварки (от нескольких десятков до сотен кг), небольшая зона расплавления.

Точечную сварку чаще всего применяют для соединения листовых заготовок внахлестку, реже - для сварки стержневых материалов. Диапазон толщин, свариваемых ею, составляет от нескольких микрометров до 2-3 см, однако чаще всего толщина свариваемого металла варьируется от десятых долей до 5-6 мм.

Кроме точечной, существуют и другие виды контактной сварки (стыковая, шовная и пр.), однако точечная сварка является наиболее распространенной. Она применятся в автомобилестроении, строительстве, радиоэлектронике, авиастроении и многих других отраслях. При строительстве современных лайнеров, в частности, производится несколько миллионов сварных точек.

Заслуженная популярность

Большая востребованность точечной сварки обусловлена целым рядом достоинств, которыми она обладает. В их числе: отсутствие необходимости в сварочных материалах (электродах, присадочных материалах, флюсах и пр.), незначительные остаточные деформации, простота и удобство работы со сварочными аппаратами, аккуратность соединения (практическое отсутствие сварного шва), экологичность, экономичность, подверженность легкой механизации и автоматизации, высокая производительность. Автоматы точечной сварки способны выполнять до нескольких сотен сварочных циклов (сварных точек) в минуту.

К недостаткам можно отнести отсутствие герметичности шва и концентрацию напряжений в точке сварки. Причем последние могут быть значительно уменьшены или вообще устранены особыми технологическими приемами.

Последовательность процессов при контактной точечной сварке

Весь процесс точечной сварки можно условно разделить на 3 этапа.
  • Сжатие деталей, вызывающее пластическую деформацию микронеровностей в цепочке электрод-деталь-деталь-электрод.
  • Включение импульса электрического тока, приводящего к нагреву металла, его расплавлению в зоне соединения и образованию жидкого ядра. По мере прохождения тока ядро увеличивается по высоте и диаметру до максимальных размеров. Происходит образование связей в жидкой фазе металла. При этом продолжается пластическая осадка контактной зоны до окончательного размера. Сжатие деталей обеспечивает образование уплотняющего пояса вокруг расплавленного ядра, который препятствует выплеску металла из зоны сварки.
  • Выключение тока, охлаждение и кристаллизация металла, заканчивающаяся образованием литого ядра. При охлаждении объем металла уменьшается, и возникают остаточные напряжения. Последние являются нежелательным явлением, с которым борются различными способами. Усилие, сжимающее электроды, снимается с некоторой задержкой после отключения тока. Это обеспечивает необходимые условия для лучшей кристаллизации металла. В некоторых случаях в заключительной стадии контактной точечной сварки рекомендуется даже увеличивать усилие прижима. Оно обеспечивает проковывание металла, устраняющее неоднородности шва и снимающее напряжения.

При следующем цикле все повторяется снова.

Основные параметры контактной точечной сварки

К основным параметрам контактной точечной сварки относятся: сила сварочного тока (I СВ), длительность его импульса (t СВ), усилие сжатия электродов (F СВ), размеры и форма рабочих поверхностей электродов (R - при сферической, d Э - при плоской форме). Для лучшей наглядности процесса эти параметры представляются в виде циклограммы, отражающей их изменение во времени.

Различают жесткий и мягкий режимы сварки. Первый характеризуется большим током, малой продолжительностью токового импульса (0,08-0,5 секунд в зависимости от толщины металла) и большой силой сжатия электродов. Его применяют для сварки медных и алюминиевых сплавов, обладающих большой теплопроводностью, а также высоколегированных сталей для сохранения их коррозионной стойкости.

При мягком режиме производится более плавный нагрев заготовок относительно небольшим током. Продолжительность сварочного импульса составляет от десятых долей до нескольких секунд. Мягкие режимы показаны для сталей, склонных к закалке. В основном именно мягкие режимы используются для контактной точечной сварки в домашних условиях, поскольку мощность аппаратов в этом случае может быть ниже, чем при жесткой сварке.

Размеры и форма электродов . С помощью электродов осуществляется непосредственный контакт сварочного аппарата с деталями, подвергаемыми сварке. Они не только подводят ток в зону сварки, но и передают сжимающее усилие и отводят тепло. Форма, размеры и материал электродов являются важнейшими параметрами аппаратов для точечной сварки.

В зависимости от их формы электроды подразделяются на прямые и фигурные. Наиболее распространены первые, они применяются для сварки деталей, допускающих свободный доступ электродов в свариваемую зону. Их размеры стандартизованы ГОСТом 14111-90, который устанавливает такие диаметры электродных стержней: 10, 13, 16, 20, 25, 32 и 40 мм.

По форме рабочей поверхности существуют электроды с плоскими и сферическими наконечниками, характеризуемыми соответственно значениями диаметра (d) и радиуса (R). От величины d и R зависит площадь контакта электрода с деталью, влияющая на плотность тока, давление и величину ядра. Электроды со сферической поверхностью имеют большую стойкость (способны сделать больше точек до переточки) и менее чувствительны к перекосам при установке, чем электроды с плоской поверхностью. Поэтому со сферической поверхностью рекомендуется изготовлять электроды, используемые в клещах, а также фигурные электроды, работающие с большими прогибами. При сварке легких сплавов (например, алюминия, магния) применяют только электроды со сферической поверхностью. Использование для этой цели электродов с плоской поверхностью приводит к чрезмерным вмятинам и подрезам на поверхности точек и повышенным зазорам между деталями после сварки. Размеры рабочей поверхности электродов выбирают в зависимости от толщины свариваемых металлов. Следует отметить, что электроды со сферической поверхностью могут быть использованы практически во всех случаях точечной сварки, электроды же с плоской поверхностью очень часто неприменимы.


* - в новом ГОСТе вместо диаметра 12 мм, введено 10 и 13 мм.

Посадочные части электродов (места соединяемые с электродержателем) должны обеспечивать надежную передачу электрического импульса и усилие прижима. Часто они выполняются в виде конуса, хотя существуют и другие виды соединений - по цилиндрической поверхности или резьбе.

Очень важное значение имеет материал электродов, определяющий их электрическое сопротивление, теплопроводность, термостойкость и механическую прочность при высоких температурах. В процессе работы электроды нагреваются до больших температур. Термоциклический режим работы, совместно с механической переменной нагрузкой, вызывает повышенный износ рабочих частей электродов, результатом чего становится ухудшение качества соединений. Чтобы электроды были в состоянии противостоять тяжелым условиям работы, их делают из специальных медных сплавов, обладающих жаропрочностью и высокой электро- и теплопроводностью. Чистая медь также способна работать в качестве электродов, однако она обладает низкой стойкостью и требует частых переточек рабочей части.

Сила сварочного тока . Сила сварочного тока (I СВ) - один из основных параметров точечной сварки. От нее зависит не только количество тепла, выделяющегося в зоне сварки, но и градиент его увеличения по времени, т.е. скорость нагрева. Напрямую зависят от I СВ и размеры сварного ядра (d, h и h 1), увеличивающиеся пропорционально увеличению I СВ.

Необходимо отметить, что ток, который протекает через зону сварки (I СВ), и ток, протекающий во вторичном контуре сварочной машины (I 2), различаются между собой - и тем больше, чем меньше расстояние между сварными точками. Причиной этого является ток шунтирования (I ш), протекающий вне зоны сварки - в том числе и через ранее выполненные точки. Таким образом, ток в сварочной цепи аппарата должен быть больше сварочного тока на величину тока шунтирования:

I 2 = I СВ + I ш

Для определения силы сварочного тока можно пользоваться разными формулами, которые содержат различные эмпирические коэффициенты, полученные опытным путем. В случаях, когда точное определение сварочного тока не требуется (что и бывает чаще всего), его значение принимают по таблицам, составленным для разных режимов сварки и различных материалов.

Увеличение времени сварки позволяет сваривать токами намного меньшими, чем приведенные в таблице для промышленных аппаратов.

Время сварки . Под временем сварки (t СВ) понимают продолжительность импульса тока при выполнении одной сварной точки. Вместе с силой тока, оно определяет количество теплоты, которое выделяется в зоне соединения при прохождении через нее электрического тока.

При увеличении t СВ повышается проплавление деталей и растут размеры ядра расплавленного металла (d, h и h 1). Одновременно с этим увеличивается и теплоотвод из зоны плавления, разогреваются детали и электроды, происходит рассеивание тепла в атмосферу. При достижении определенного времени может наступить состояние равновесия, при котором вся подводимая энергия отводится из зоны сварки, не увеличивая проплавление деталей и размер ядра. Поэтому увеличение t СВ целесообразно только до определенного момента.

При точном расчете продолжительности сварочного импульса должны учитываться многие факторы - толщина деталей и размер сварной точки, температура плавления свариваемого металла, его предел текучести, коэффициент аккумуляции тепла и пр. Есть сложные формулы с эмпирическими зависимостями, по которым при необходимости осуществляют расчет.

На практике чаще всего время сварки принимают по таблицам, корректируя при необходимости принятые значения в ту или иную сторону в зависимости от полученных результатов.

Усилие сжатия . Усилие сжатия (F СВ) оказывает влияние на многие процессы контактной точечной сварки: на пластические деформации, происходящие в соединении, на выделение и перераспределение тепла, на охлаждение металла и его кристаллизацию в ядре. С увеличением F СВ увеличивается деформация металла в зоне сварки, уменьшается плотность тока, снижается и стабилизируется электрическое сопротивление на участке электрод-детали-электрод. При условии сохранения размеров ядра неизменными, прочность сварных точек с ростом усилия сжатия возрастает.

При сварке на жестких режимах применяют более высокие значения F СВ, чем при мягкой сварке. Это связано с тем, что при увеличении жесткости возрастает мощность источников тока и проплавление деталей, что может приводить к образованию выплесков расплавленного металла. Большое усилие сжатия как раз и призвано воспрепятствовать этому.

Как уже отмечалось, для проковки сварной точки с целью снятия напряжений и повышения плотности ядра, технология контактной точечной сварки в некоторых случаях предусматривает кратковременное увеличение силы сжатия после отключения электрического импульса. Циклограмма в этом случае выглядит следующим образом.

При изготовлении простейших аппаратов контактной сварки для домашнего пользования нет большого резона заниматься точными расчетами параметров. Ориентировочные значения диаметра электродов, сварочного тока, времени сварки и усилия сжатия можно взять из таблиц, имеющихся во многих источниках. Нужно только понимать, что данные в таблицах являются несколько завышенными (или заниженными, если иметь в виду время сварки) по сравнению с теми, которые подойдут для домашних аппаратов, где обычно используются мягкие режимы.

Подготовка деталей к сварке

Поверхность деталей в зоне контакта деталей между собой и в месте контакта с электродами зачищают от окислов и других загрязнений. При плохой зачистке возрастают потери мощности, ухудшается качество соединений и увеличивается износ электродов. В технологии контактной точечной сварки, для зачистки поверхности используют пескоструйную обработку, наждачные круги и металлические щетки, а также травление в специальных растворах.

Высокие требования предъявляются к качеству поверхности деталей из алюминиевых и магниевых сплавов. Целью подготовки поверхности под сварку является удаление без повреждения металла относительно толстой пленки окислов с высоким и неравномерным электрическим сопротивлением.

Оборудование для точечной сварки

Различия между существующими видами аппаратов для точечной сварки определяются в основном родом сварочного тока и формой его импульса, которые производятся их силовыми электрическими контурами. По этим параметрам оборудование контактной точечной сварки подразделяется на следующие виды:
  • машины для сварки переменным током;
  • аппараты низкочастотной точечной сварки;
  • машины конденсаторного типа;
  • машины сварки постоянным током.

Каждый из этих типов машин имеет свои преимущества и недостатки в технологическом, техническом и экономическом аспектах. Наибольшее распространение получили машины для сварки переменным током.

Машины контактной точечной сварки переменного тока . Принципиальная схема машин для точечной сварки переменным током представлена на рисунке ниже.

Напряжение, при котором осуществляется сварка, формируется из напряжения сети (220/380В) с помощью сварочного трансформатора (ТС). Тиристорный модуль (КТ) обеспечивает подключение первичной обмотки трансформатора к питающему напряжению на необходимое время для формирования сварочного импульса. С помощью модуля можно не только управлять продолжительностью времени сварки, но и осуществлять регулирование формы подаваемого импульса за счет изменения угла открытия тиристоров.

Если первичную обмотку выполнить не из одной, а нескольких обмоток, то, подключая их в различном сочетании друг с другом, можно менять коэффициент трансформации, получая различные значения выходного напряжения и сварочного тока на вторичной обмотке.

Кроме силового трансформатора и тиристорного модуля, машины контактной точечной сварки переменного тока имеют набор управляющего оборудования - источник питания для системы управления (понижающий трансформатор), реле, логические контроллеры, панели управления и пр.

Конденсаторная сварка . Сущность конденсаторной сварки заключается в том, что сначала электрическая энергия относительно медленно накапливается в конденсаторе при его зарядке, а затем очень быстро расходуется, генерируя токовый импульс большой величины. Это позволяет производить сварку, потребляя из сети меньшую мощность по сравнению с обычными аппаратами для точечной сварки.

Кроме этого основного преимущества, конденсаторная сварка имеет и другие. При ней происходит постоянное контролируемое расходование энергии (той, которая накопилась в конденсаторе) на одно сварное соединение, что обеспечивает стабильность результата.

Сварка происходит за очень короткое время (сотые и даже тысячные доли секунды). Это дает концентрированное выделение тепла и минимизирует зону термического влияния. Последнее достоинство позволяет использовать её для сварки металлов с высокой электро- и теплопроводностью (медных и алюминиевых сплавов, серебра и др.), а также материалов с резко различающимися теплофизическими свойствами.

Жесткая конденсаторная микросварка используется в радиоэлектронной промышленности.

Количество энергии, накопленное в конденсаторах, можно рассчитать по формуле:

W = C U 2 /2

где С - емкость конденсатора, Ф; W - энергия, Вт; U - зарядное напряжение, В. Изменяя величину сопротивления в зарядной цепи, регулируют время зарядки, зарядный ток и потребляемую из сети мощность.

Дефекты контактной точечной сварки

При качественном исполнении, точечная сварка обладает высокой прочностью и способна обеспечить эксплуатацию изделия в течение длительного срока службы. При разрушениях конструкций, соединенных многоточечной многорядной точечной сваркой, разрушение происходит, как правило, по основному металлу, а не по сварным точкам.

Качество сварки зависит от приобретенного опыта, который сводится в основном к выдерживанию необходимой продолжительности токового импульса на основании визуального наблюдения (по цвету) за сварной точкой.

Правильно выполненная сварная точка расположена по центру стыка, имеет оптимальный размер литого ядра, не содержит пор и включений, не имеет наружных и внутренних выплесков и трещин, не создает больших концентраций напряжения. При приложении усилия на разрыв, разрушение конструкции происходит не по литому ядру, а по основному металлу.

Дефекты точечной сварки подразделяются на три типа:

  • отклонения размеров литой зоны от оптимальных, смещение ядра относительно стыка деталей или положения электродов;
  • нарушение сплошности металла в зоне соединения;
  • изменение свойств (механических, антикоррозионных и др.) металла сварной точки или прилегающих к ней областей.

Наиболее опасным дефектом считается отсутствие литой зоны (непровар в виде "склейки"), при котором изделие может выдерживать нагрузку при невысокой статической нагрузке, но разрушается при действии переменной нагрузки и колебаниях температуры.

Прочность соединения оказывается сниженной и при больших вмятинах от электродов, разрывах и трещинах кромки нахлестки, выплеске металла. В результате выхода литой зоны на поверхность, снижаются антикоррозионные свойства изделий (если они были).

Непровар полный или частичный, недостаточные размеры литого ядра . Возможные причины: мал сварочный ток, слишком велико усилие сжатия, изношена рабочая поверхность электродов. Недостаточность сварочного тока может вызываться не только его малым значением во вторичном контуре машины, но и касанием электрода вертикальных стенок профиля или слишком близким расстоянием между сварными точками, приводящим к большому шунтирующему току.

Дефект обнаруживается внешним осмотром, приподниманием кромки деталей пробойником, ультразвуковыми и радиационными приборами для контроля качества сварки.

Наружные трещины . Причины: слишком большой сварочный ток, недостаточная сила сжатия, отсутствие усилия проковки, загрязненная поверхность деталей и/или электродов, приводящая к увеличению контактного сопротивления деталей и нарушению температурного режима сварки.

Дефект можно обнаружить невооруженным глазом или с помощью лупы. Эффективна капиллярная диагностика.

Разрывы у кромок нахлестки . Причина этого дефекта обычно одна - сварная точка расположена слишком близко от края детали (недостаточна нахлестка).

Обнаруживается внешним осмотром - через лупу или невооруженным глазом.

Глубокие вмятины от электрода . Возможные причины: слишком малый размер (диаметр или радиус) рабочей части электрода, чрезмерно большое ковочное усилие, неправильно установленные электроды, слишком большие размеры литой зоны. Последнее может являться следствием превышения сварочного тока или длительности импульса.

Внутренний выплеск (выход расплавленного металла в зазор между деталями) . Причины: превышены допустимые значения тока или длительности сварочного импульса - образовалась слишком большая зона расплавленного металла. Мало усилие сжатия - не создался надежный уплотняющий пояс вокруг ядра или образовалась воздушная раковина в ядре, вызвавшая вытекание расплавленного металла в зазор. Неправильно (несоосно или с перекосом) установлены электроды.

Определяется методами ультразвукового или рентгенографического контроля или внешним осмотром (из-за выплеска может образоваться зазор между деталями).

Наружный выплеск (выход металла на поверхность детали) . Возможные причины: включение токового импульса при несжатых электродах, слишком большое значение сварочного тока или продолжительности импульса, недостаточное усилие сжатия, перекос электродов относительно деталей, загрязнение поверхности металла. Две последние причины приводят к неравномерной плотности тока и расплавлению поверхности детали.

Определяется внешним осмотром.

Внутренние трещины и раковины . Причины: слишком велики ток или продолжительность импульса. Загрязнена поверхность электродов или деталей. Мала сила сжатия. Отсутствует, опаздывает или недостаточно ковочное усилие.

Усадочные раковины могут возникать во время охлаждения и кристаллизации металла. Чтобы воспрепятствовать их возникновению, необходимо повышать силу сжатия и применять проковывающее сжатие в момент охлаждения ядра. Дефекты обнаруживаются методами рентгенографического или ультразвукового контроля.

Смещение литого ядра или его неправильная форма . Возможные причины: неправильно установлены электроды, не очищена поверхность деталей.

Дефекты обнаруживаются методами рентгенографического или ультразвукового контроля.

Прожог . Причины: наличие зазора в собранных деталях, загрязнение поверхности деталей или электродов, отсутствие или малое усилие сжатия электродов во время токового импульса. Во избежание прожогов ток должен подаваться только после приложения полного усилия сжатия. Определяется внешним осмотром.

Исправление дефектов . Способ исправления дефектов зависит от их характера. Самым простым является повторная точечная или иная сварка. Дефектное место рекомендуется вырезать или высверлить.

При невозможности сварки (из-за нежелательности или недопустимости нагрева детали), вместо дефектной сварной точки можно поставить заклепку, высверлив место сварки. Применяются и другие способы исправления - зачистка поверхности в случае наружных выплесков, термическая обработка для снятия напряжений, правка и проковка при деформации всего изделия.

При использовании содержания данного сайта, нужно ставить активные ссылки на этот сайт, видимые пользователями и поисковыми роботами.

Основные сведения об изделии и технические данные.
Регуляторы контактной сварки РКС-502 и РКС-801, в дальнейшем именуемые "регуляторы", предназначены для комплектации контактных электросварочных машин.
Регуляторы обеспечивают:

Управление последовательностью действий однофазных машин точечной сварки, имеющих контактор и клапан (для регулятора РКС-801 - два клапана) постоянного тока;

Регулирование длительности позиций сварочного цикла с цифровым отсчетом;

Управление тиристорным контактором и регулирование величины сварочного тока;

Автоматическую настройку на коэффициент мощности cosφ с изменением полярности включения первой полуволны сварочного тока;

Стабилизацию действующего значения сварочного тока при колебаниях напряжения питающей сети.

Управление регулятором проводится путем замыкания и размыкания контактов педали сварочной машины.

Принцип работы регулятора

Рассмотрим работу регуляторов в режиме "Одиночная сварка".

При подаче на регулятор напряжения питания зажигается индикатор " " на передней панели. Счетчики и триггеры блоков цикла и счета устанавливаются в ноль с помощью цепочки на транзисторах VT7, VT8 на блоке счета. С помощью схемы собранной на элементах VT1, VT2, D2, VT3, VT4, VT5, VT6, D3, вырабатываются и формируются тактовые импульсы.

При замыкании контактов педали сварочной машины инвертор на VT9 опрокидывается и сигнал подается на блок цикла на D10.3, запускается триггер D3.8 "Предварительное сжатие". Одновременно, на блоке счета счетчик D6 вырабатывает импульсы счета для позиций "XI", a D8 для "XI0". При совпадении количества импульсов на дешифраторах D7 (для "XI") и D9 (для "Х10") с количеством периодов, установленных на переключателе позиций "Предварительное сжатие", в блок цикла поступает сигнал, запускающий счет позиции "Сжатие". Аналогичным образом работают остальные режимы схемы.

При постоянно замкнутых контактах педали автоматически повторяется сварочный цикл, если переключатель "Режим работы" регулятора установлен в положении "Серия сварок", и дает только один цикл в положении "Одиночная сварка". В режиме "Серия сварок" выдержка "Предварительное сжатие" исключается после прохождения первого сварочного цикла. При размыкании педали после прохождения выдержки "Сжатие" обеспечивается прохождение полного сварочного цикла. В случае размыкания педали на выдержке "Сжатие" сварочный цикл прекращается, сварочная машина возвращается в состояние ожидания.

Индикация прохождения сварочного цикла осуществляется с помощью индикаторов, установленных на лицевой панели.

Для регулятора РКС-502 на блоке счета имеется схема на элементах D5.1, D4.3, D3.6, которая с помощью переключателя "Х4" позволяет увеличить длительность одновременно всех позиций цикла в 4 раза. (Для регулятора РКС-801 элементы D1.2, D4.1, D4.2, переключатель "Х2" и увеличение длительности позиций в 2 раза соответственно)

Для работы регулятора по циклу длительность каждой выдержки должна быть не менее "01" (1 периода). Длительность "00" является запрещенной.

Схема блока стабилизаторов является типовой, ее принцип работы приведен в справочниках и специального описания не требует.

Блок регулировки тока обеспечивает формирование импульсов управления тиристорным контактором, автоматическую регулировку cosφ и стабилизацию сварочного тока. Сигнал с первичной цепи силового трансформатора контактной машины через промежуточный трансформатор попадает на диодный мост VD17-VD20, формируется на элементах VT12, D4.6, D5.4, Dl.l, D2.1, сдвигается по фазе на необходимую величину на элементах С6, VT9, VT10 и импульсы управления с элементов D7, VT11 подаются на блок усилителей.

Регулировка нижних пределов действующего значения сварочного тока производится схемой на элементе D8 у изготовителя и дополнительной подстройки не требует. Стабилизация сварочного тока осуществляется при установке переключателя в положение "Включено" на лицевой панели.

Блок усилителей предназначен для усиления импульсов управления тиристорными контакторами (схема на VT1, VT2) и включения клапана (VT3) для РКС-502 или клапанов (VT3, VT6) (для РКС-801).

В блоке предусмотрена электронная защита цепей питания клапана от перегрузок по току (VT7, VT8, VT9, VT10). Индикация срабатывания защиты производится с помощью индикатора на лицевой панели.

Элементы D1, D3, D4, D5 (дополнительно D2 для РКС-801) служат для управления регулятором с помощью внешних сигналов. Схема подключения цепей внешнего управления регуляторами приведена в приложении 11.


Переключателем "Компенсация" можно отключить стабилизацию, что увеличивает величину тока на 15%.

Сварочный ток можно отключить переключателем "Ток включен". Такой режим необходим при наладке машины.

Регулятор РКС-801 выполняет также следующие дополнительные функции:

Регулировку величины сварочного тока для позиций "Сварка 1" и "Сварка 2", задаваемой переключателями "Нагрев 1" и "Нагрев 2" соответственно. Нулевое положение переключателя соответствует минимальной величине сварочного тока (50%), положение "9" - максимальное;

В режиме импульсной сварки позиции "Охлаждение" и "Сварка 1" могут отрабатываться до 9 раз в одном цикле. Количество импульсов задается переключателем "Число импульсов";

Первый импульс сварочного тока позиции "Сварка 1" может быть промодулирован. Суть модуляции состоит в том, что первая полуволна сварочного тока имеет значение минимальной величины и за десять периодов нарастает до максимального значения (которое должно быть установлено переключателем "Нагрев 1"). При установке переключателя "Нарастание" в положение "9", время модуляции наибольшее, и составляет 0,2 сек. При установке переключателя в положение "0" первый импульс сварочного тока импульс не модулируется;

Клапан 2, управляемый регулятором, осуществляет дополнительное обжатие заготовки на позициях "Сжатие" ("Повышенное усилие 12) и на позициях "Проковка 1", "Сварка 2", "Проковка 2" ("Повышенное усилие 2"). Повышенные усилия могут быть отключены соответствующими переключателями. Сигнализация работы клапана 2 на повышенном усилии 2 осуществляется индикатором. Срабатывание клапана 2 на повышенном усилии 2 можно задержать на 1...9 периодов с момента окончания позиции "Сварка 1" при помощи соответствующего переключателя (длительность позиции "Проковка 1" должна быть не меньше значения задержки).

В.Г. Квачев (Институт кибернетики АН УССР)

Контактная точечная сварка - один из самых производительных способов соединения металлов. В связи с широким использованием ее в массовом производстве и отсутствием совершенных методов неразрушающего контроля особое значение приобретает строгое соблюдение требований, предъявляемых к технологическому процессу на этапах подбора режима, подготовки материалов под сварку, сборки деталей и т.д. При этом подбор оптимального режима сварки определяет воспроизводимость заданного качества соединений. Нетрудно показать, что при прочих равных условиях и постоянной колеблемости основных параметров режима функция стабильности качества y = f ( x 1, x 2… x n ) - параметры режима, зависит от соотношения этих параметров и имеет максимум в области оптимальных режимов сварки.

При точечной сварке материала определенной толщины режим задается временными зависимостями сварочного тока I св (t) и усилия сжатия F c ж ( t ), а также размерами и формой контактной поверхности электродов.

Рядом исследователей предложены формулы для расчета тока, как основного параметра, обусловливающего выделение тепла при сварке . Однако попытки их практического использования сопряжены с известными трудностями, вызванными сложностью расчетов и несовпадением полученных данных с практическими результатами . В последнее время для определения режимов сварки применяют теорию подобия или метод обобщенных переменных .

Однако существующие аналитические методы позволяют лишь предварительно оценить область изменения параметров режима, окончательный выбор которых требует существенного экспериментального корректирования.

Результаты корректирования расчетных и табличных значений параметров практически всецело зависят от квалификации технолога- сварщика, его опыта и методики, используемой при подборе режима. Естественно, такой подход привносит субъективный фактор, что зачастую приводит к непроизводительным затратам времени и материалов.

Выбор и корректирование режимов сварки - типичная задача оптимизации, т.е. нахождения наилучших в определенном смысле значений параметров режима. При заданном критерии качества (обычно это диаметр ядра (d я или разрывное усилие) задача оптимизации заключается в определении параметров, принадлежащих некоторой области допустимых значений и обеспечивающих экстремум выбранного критерия.

При наличии аналитической зависимости между управляющими параметрами режима и критерием качества решение этой задачи не составляет особого труда. Однако недостаточная изученность процесса сварки, большое количество параметров и случайный характер возмущений не позволяют получить достаточно точного аналитического описания. Поэтому оптимальные параметры режима могут быть определены с помощью методов математического планирования экспериментов, основанных на обработке данных, которые получены непосредственно на действующем объекте. При этом в отличие от аналитического исследования осуществляется локальное изучение поверхности отклика по результатам некоторого набора экспериментов, В результате ряда последовательных процедур изучения поверхности отклика получают его экстремальное значение, причем эксперименты планируются таким образом, чтобы минимизировать количество опытов и время, затрачиваемое на поиск экстремума. Обычно наиболее эффективно использование факторных методов планирования, получивших в последнее время широкое распространение при исследовании технологических процессов.

Для решения поставленной задачи был применен метод последовательного симплекс-планирования . Основная идея его заключается в том, что поверхность отклика в некоторой области аппроксимируется линейным приближением с помощью минимального числа экспериментальных точек, образующих симплекс, и движение по этой поверхности в поисках оптимального значения осуществляется путем отбрасывания вершины симплекса с меньшим откликом и построения новой, являющейся зеркальным отображением отброшенной. Это позволяет совместить процесс из учения поверхности отклика с перемещением по ней. Достигнув области экстремума, симплекс начинает вращение вокруг вершины максимальным откликом. Это свидетельствует о том, что все остальные вершины, определяемые соотношением исходных параметров, дают меньший по сравнению с дентальной выход и используются для определения окончания процесса оптимизации.

Более подробное описание алгоритма метода симплекс-планирования будет рассмотрено ниже. Здесь же необходимо отметить основные достоинства, обусловившие выбор этого метода для решения задачи:

1) использование его не требует специальных математических знаний. Вычисления крайне просты, все приемы формализованы, поэтому метод пригоден как для ручной, так для машинной реализации;

2) направление движения определяется не точными количественными значениями отклика, а лишь соотношением между ними. Это особенно важно в случае затруднений при измерении показателя качества сварки;

3) ввиду того, что перемещение симплекса основывается на качественной информации не нужно предъявлять слишком высокие требования к точности поддержания и измерения значений параметров, соответствующих координатам вершин. Это позволяет использовать метод непосредственно в производственных условиях, где измерение и поддержание значений параметров с высокой точностью затруднены.

Ниже на примере выбора оптимального режима точечной сварки материала Д16АМ мм на низкочастотной машине показана методика применения симплекс-планирования. Эксперимент планировался для двух независимых переменных режима: максимального значения импульса сварочного тока I св max и усилия сжатия электродов F сж . Остальные параметры (время сварки, диаметр электро да d э радиус его заточки R з и т.д.) поддерживались на заданном уровне.

На основании данных таблиц рекомендованных режимов выбирались диапазон изменения каждой из переменных: 25 кА I св max 35 кА, 280 кг сж 400 кг – интервал варьирования ; величина кА, кг.

В качестве критерия оптимизации принимали диаметр ядра сварной точки. Переменные режима измерялись с помощью специализированной аппаратуры .

Симплексом, как известно, называется простейшая выпуклая геометрическая фигура, обладающая минимальным количеством вершин n +1, где n - число исследуемых переменных. В рассматриваемом случае при n =2 регулярный симплекс представляет собой равносторонний треугольник, координаты вершин которого в пространстве исследуемых переменных определяют план опытов.

Начальный симплекс строился для режима I св max = 175. F сж = 120 . Ввиду того что предварительная оценка направления движения затруднена, ориентация первоначального симплекса произвольна. Поэтому расположим его сторону А 1 А 2 параллельно оси тока (рисунок, а). Учитывая выбранные интервалы варьирования параметров и пользуясь матрицей планирования , строим начальный симплекс A 1 A 2 A 3 . Результаты опытов в вершинах симплекса (табл. 1) показали, что минимальное значение диаметра ядра дает режим, определяемый точкой А 2 . Поэтому для осуществления движения в направлении увеличения отклика необходимо отбросить точку А 2 и на оставшейся стороне А 1 –А 3 достроить новый симплекс путем добавления точки А 4 .

Координаты новой точки определяются следующим соотношением:

A ji =2/n (A 1i + A 2i + …+ A ji + …+ A k +1. i ) - A ji

i =1, 2, 3,…, k .

Здесь первый индекс обозначает номер вершины симплекса, а второй - ее координату: j - номер вершины с минимальным откликом. Для рассматриваемого случая координаты точки А 4 вычисляются так:

A 4 (F сж )=2/2 [ A 1 (F сж )+ A 3 (F сж )]– A 2 (F сж );

A 4 (I св max )=2/2 –A 2 (I св max ).

После проведения эксперимента в точке A 4 производится сравнительная оценка диаметра ядра для режимов A 1 , A 3 , A 4 . Точка симплекса с минимальным выходом отбрасывается и описанная процедура повторяется.

Рис. Траектория движения симплекса при определении оптимального режима сварки (d э =20мм, R з =75мм)

А - сплава Д16АМ; б – сплава АМг6; в – нержавеющей стали 1Х18Н9Т

Как видно из рисунка и табл. 1, после достижения симплексом точки А 8 поступательное движение прекратилось.

Таблица 1

№ опыта

Симплекс

Точка, в которой проводится опыт

Координаты вершин

d я , мм

I св max

F сж

A 1 A 2 A 3

A 1 A 2 A 3

A 1 A 2 A 3

A 1 A 3 A 4

A 3 A 4 A 5

A 4 A 5 A 6

A 5 A 6 A 7

A 6 A 7 A 8

A 6 A 8 A 9

A 8 A 9 A 10

A 10

A 8 A 10 A 11

A 11

A 8 A 11 A 12

A 12

Примечание. В опытах № 10, 11 произошел выплеск.

При сварке на режиме, определяемом точкой А 10 , диаметр ядра увеличился, но при этом произошел выплеск. Следующий симплекс был построен на стороне А 8 …А 10 , и эксперимент, проведенный в точке А 11 , также привел к выплеску. Завершающий опыт в вершине А 12 дал существенно меньшие размеры диаметра ядра по сравнению с режимом, определяемым точкой А 8 .

После завершения цикла вращения симплекса вокруг вершины А 8 оказалось, что режимы A 9 , A 10 , A 11 , A 12 дают меньший диаметр ядра либо приводят к выплескам.

Для уточнения координат оптимального режима в точке А 8 был проведен ряд опытов, которые дали хорошую воспроизводимость результатов. Таким образом, в качестве оптимального был определен режим, соответствующий вершине А 8 с координатами I св max =190, F сж =104.

Аналогичный эксперимент по выбору оптимального режима сварки был проведен также для материалов АМг6 и 1Х18Н9Т мм . Траектории движения симплексов для них приведены на рис. б и в. В табл. 2 указаны оптимальные режимы в натуральных единицах.

Таблица 2

Свариваемый материал

I св max , к А

F сж , кг

Д16АМ

31,2

АМг6

17,6

1Х18Н9Т

Литература

1. А.С. Гельман, Технология и оборудование контактной сварки, Машгиз, М., 1960.

2. К.А. Кочергин, Вопросы теории контактной сварки, Машгиз, М, - Л., 1950.

2. Г.Ф. Скакун, А.А. Чакалаев, К вопросу расчета некоторых параметров режима точечной сварки легких сплавов, сб. «Надежность сварных соединений и конструкций», «Машиностроение», М, 1967.

3. В.К . Лебедев, Ю.Д. Яворский, Применение критериев подобия для определения режимов сварки, «Автоматическая сварка», № 8, 1960.

4. В.В. Налимов, Н.А. Чернова, Статистические методы планирования экстремальных экспериментов, «Наука», М., 1965.

5. Б.Е. Патон и др., Автоматизация экспериментальных исследований сварочных процессов, «Автоматическая сварка», № 6, 1970.

6. П.В. Ермуратский, Симплексный метод оптимизации, «Труды МЭИ», вып. 67, 1966.